Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

LLM UNDERSTANDING: 40. Tom GRIFFITHS "Cognitive Science Tools for Understanding Behavior of LLMs"

Автор: Stevan Harnad

Загружено: 2024-06-15

Просмотров: 1031

Описание:

COGNITIVE SCIENCE TOOLS FOR UNDERSTANDING THE BEHAVIOR OF LARGE LANGUAGE MODELS

Tom Griffiths

Computer Science, Princeton University

ISC Summer School on Large Language Models: Science and Stakes, June 3-14, 2024

FRI, June 14, 3:30PM-5pm EDT


ABSTRACT: Large language models have been found to have surprising capabilities, even what have been called “sparks of artificial general intelligence.” However, understanding these models involves some significant challenges: their internal structure is extremely complicated, their training data is often opaque, and getting access to the underlying mechanisms is becoming increasingly difficult. As a consequence, researchers often have to resort to studying these systems based on their behavior. This situation is, of course, one that cognitive scientists are very familiar with — human brains are complicated systems trained on opaque data and typically difficult to study mechanistically. In this talk I will summarize some of the tools of cognitive science that are useful for understanding the behavior of large language models. Specifically, I will talk about how thinking about different levels of analysis (and Bayesian inference) can help us understand some behaviors that don’t seem particularly intelligent, how tasks like similarity judgment can be used to probe internal representations, how axiom violations can reveal interesting mechanisms, and how associations can reveal biases in systems that have bee trained to be unbiased.

TOM GRIFFITHS is the Henry R. Luce Professor of Information Technology, Consciousness and Culture in the Departments of Psychology and Computer Science at Princeton University. His research explores connections between human and machine learning, using ideas from statistics and artificial intelligence to understand how people solve the challenging computational problems they encounter in everyday life. Tom completed his PhD in Psychology at Stanford University in 2005, and taught at Brown University and the University of California, Berkeley before moving to Princeton. He has received awards for his research from organizations ranging from the American Psychological Association to the National Academy of Sciences and is a co-author of the book Algorithms to Live By, introducing ideas from computer science and cognitive science to a general audience.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y., & Narasimhan, K. (2024). Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural Information Processing Systems, 36.

Hardy, M., Sucholutsky, I., Thompson, B., & Griffiths, T. (2023). Large language models meet cognitive science: Llms as tools, models, and participants. In Proceedings of the annual meeting of the cognitive science society (Vol. 45, No. 45).

LLM UNDERSTANDING: 40. Tom GRIFFITHS "Cognitive Science Tools for Understanding Behavior of LLMs"

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Tom Griffiths on Using Machine Learning and Psychology to Predict and Understand Human Decisions

Tom Griffiths on Using Machine Learning and Psychology to Predict and Understand Human Decisions

'‘Understanding Understanding and Why LLMs Don’t

'‘Understanding Understanding and Why LLMs Don’t"

[MERL Seminar Series Fall 2024] Tools from cognitive science to understand the behavior of large ...

[MERL Seminar Series Fall 2024] Tools from cognitive science to understand the behavior of large ...

Tom Griffiths Interview

Tom Griffiths Interview

Tom Griffiths - Understanding human intelligence through human limitations - IPAM at UCLA

Tom Griffiths - Understanding human intelligence through human limitations - IPAM at UCLA

Reinforcement Learning (RL) for LLMs

Reinforcement Learning (RL) for LLMs

A Theory of the Mechanics of Information - Christopher Hazard

A Theory of the Mechanics of Information - Christopher Hazard

LLM Understanding: 11. Karl FRISTON

LLM Understanding: 11. Karl FRISTON "The Physics of Communication"

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

LLM UNDERSTANDING: 27. Michael LEVIN

LLM UNDERSTANDING: 27. Michael LEVIN

Black Holes as Dark Matter - Stefano Profumo

Black Holes as Dark Matter - Stefano Profumo

LLM UNDERSTANDING: 38. Ellie PAVLICK

LLM UNDERSTANDING: 38. Ellie PAVLICK "Symbols and Grounding in LLMs"

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Princeton Robotics - Russ Tedrake - Dexterous Manipulation with Diffusion Policies

Princeton Robotics - Russ Tedrake - Dexterous Manipulation with Diffusion Policies

LLM UNDERSTANDING: 29. Gary LUPYAN

LLM UNDERSTANDING: 29. Gary LUPYAN "What counts as understanding?"

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

Почему простые числа образуют эти спирали? | Теорема Дирихле и пи-аппроксимации

Почему простые числа образуют эти спирали? | Теорема Дирихле и пи-аппроксимации

Everything you need to know about Fine-tuning and Merging LLMs: Maxime Labonne

Everything you need to know about Fine-tuning and Merging LLMs: Maxime Labonne

LLM UNDERSTANDING: 33. B. RICHARDS Revisiting the Turing test in the age of large language models

LLM UNDERSTANDING: 33. B. RICHARDS Revisiting the Turing test in the age of large language models"

3 ways to make better decisions -- by thinking like a computer | Tom Griffiths

3 ways to make better decisions -- by thinking like a computer | Tom Griffiths

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com