Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Webinar: MLOps automation with Git Based CI/CD for ML

Автор: CNCF [Cloud Native Computing Foundation]

Загружено: 2020-08-26

Просмотров: 18866

Описание:

Deploying AI/ML based applications is far from trivial. On top of the traditional DevOps challenges, you need to foster collaboration between multidisciplinary teams (data-scientists, data/ML engineers, software developers and DevOps), handle model and experiment versioning, data versioning, etc. Most ML/AI deployments involve significant manual work, but this is changing with the introduction of new frameworks that leverage cloud-native paradigms, Git and Kubernetes to automate the process of ML/AI-based application deployment.

In this session we will explain how ML Pipelines work, the main challenges and the different steps involved in producing models and data products (data gathering, preparation, training/AutoML, validation, model deployment, drift monitoring and so on). We will demonstrate how the development and deployment process can be greatly simplified and automated. We’ll show how you can: a. maximize the efficiency and collaboration between the various teams, b. harness Git review processes to evaluate models, and c. abstract away the complexity of Kubernetes and DevOps.

We will demo how to enable continuous delivery of machine learning to production using Git, CI frameworks (e.g. GitHub Actions) with hosted Kubernetes, Kubeflow, MLOps orchestration tools (MLRun), and Serverless functions (Nuclio) using real-world application examples.

Presenter:

Yaron Haviv, Co-Founder and CTO @Iguazio

Webinar: MLOps automation with Git Based CI/CD for ML

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Дмитрий Бугайченко — Что такое MLOps и как это работает на примере Сбера

Дмитрий Бугайченко — Что такое MLOps и как это работает на примере Сбера

Introduction to CI CD Pipeline | CI CD Explained | DevOps Training |  Edureka Rewind

Introduction to CI CD Pipeline | CI CD Explained | DevOps Training | Edureka Rewind

OpenShift Coffee Break: MLOps with OpenShift

OpenShift Coffee Break: MLOps with OpenShift

Airflow и MLFlow автоматизаций пайплайнов Machine Learning / MLOps

Airflow и MLFlow автоматизаций пайплайнов Machine Learning / MLOps

MLOps on Databricks: A How-To Guide

MLOps on Databricks: A How-To Guide

Webinar: Local Development in The Age of Kubernetes

Webinar: Local Development in The Age of Kubernetes

MLOps In Practice – How To Run Your Machine Learning Models In Production At Enterprise Scale

MLOps In Practice – How To Run Your Machine Learning Models In Production At Enterprise Scale

Azure Machine Learning for MLOps by Mercy Ranjit

Azure Machine Learning for MLOps by Mercy Ranjit

Сквозные многозадачные операции (MLOps) с MLflow и Kubeflow — Ник Чейз, CloudGeometry

Сквозные многозадачные операции (MLOps) с MLflow и Kubeflow — Ник Чейз, CloudGeometry

CNCF Live Webinar: Overcoming the GPU shortage with virtual Kubelets & distributed cloud

CNCF Live Webinar: Overcoming the GPU shortage with virtual Kubelets & distributed cloud

Tutorial: From Notebook to Kubeflow Pipelines to KFServing: the Data Science... - Karl Weinmeister

Tutorial: From Notebook to Kubeflow Pipelines to KFServing: the Data Science... - Karl Weinmeister

AWS re:Invent 2021 - Implementing MLOps practices with Amazon SageMaker, featuring Vanguard

AWS re:Invent 2021 - Implementing MLOps practices with Amazon SageMaker, featuring Vanguard

What is MLOps, Why do you need it, and Where do you begin

What is MLOps, Why do you need it, and Where do you begin

MLOps Tutorial#1. Continuous Integration (CI/CD) for ML Pipelines with Github Actions

MLOps Tutorial#1. Continuous Integration (CI/CD) for ML Pipelines with Github Actions

Introduction to Distributed ML Workloads with Ray on Kubernetes - Mofi Rahman & Abdel Sghiouar

Introduction to Distributed ML Workloads with Ray on Kubernetes - Mofi Rahman & Abdel Sghiouar

How to build a MLOps platform

How to build a MLOps platform

Hands on Workshop: Create Machine Learning Retraining Pipelines

Hands on Workshop: Create Machine Learning Retraining Pipelines

Webinar:  Cloud Native Strategy

Webinar: Cloud Native Strategy

MLflow Pipelines: Accelerating MLOps from Development to Production

MLflow Pipelines: Accelerating MLOps from Development to Production

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]