Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Stanford Seminar - Can the brain do back-propagation? Geoffrey Hinton

Автор: Stanford Online

Загружено: 2016-04-28

Просмотров: 64659

Описание:

"Can the brain do back-propagation?" - Geoffrey Hinton of Google & University of Toronto

About the talk:
Deep learning has been very successful for a variety of difficult perceptual tasks. This suggests that the sensory pathways in the brain might also be using back-propagation to ensure that lower cortical areas compute features that are useful to higher cortical areas. Neuroscientists have not taken this possibility seriously because there are so many obvious objections: Neurons do not communicate real numbers; the output of a neuron cannot represent both a feature of the world and the derivative of a cost function with respect to the neuron's output; the feedback connections to lower cortical areas that are needed to communicate error derivatives do not have the same weights as the feedforward connections; the feedback connections do not even go to the neurons from which the feedforward connections originate; there is no obvious source of labelled data. I will describe joint work with Timothy Lillicrap on ways of overcoming these objections.

Support for the Stanford Colloquium on Computer Systems Seminar Series provided by the Stanford Computer Forum.

Speaker Abstract and Bio can be found here:
http://ee380.stanford.edu/Abstracts/1...

Colloquium on Computer Systems Seminar Series (EE380) presents the current research in design, implementation, analysis, and use of computer systems. Topics range from integrated circuits to operating systems and programming languages. It is free and open to the public, with new lectures each week.

Learn more: http://bit.ly/WinYX5

0:00 Introduction
0:48 Online stochastic gradient descent
2:43 Four reasons why the brain cannot do backprop
5:20 Sources of supervision that allow backprop learning without a separate supervision signal
8:18 The wake-sleep algorithm (Hinton et. al. 1995)
12:15 New methods for unsupervised learning
13:39 Conclusion about supervision signals
14:03 Can neurons communicate real values?
16:16 Statistics and the brain
18:39 Big data versus big models
23:32 Dropout as a form of model averaging
24:53 Different kinds of noise in the hidden activities
28:38 How are the derivatives sent backwards?
30:18 A fundamental representational decision: temporal derivatives represent error derivatives
32:24 An early use of the idea that temporal derivatives encode error derivatives (Hinton & McClelland, 1988)
35:17 Combining STDP with reverse STDP
37:02 If this is what is happening, what should neuroscientists see?
39:22 What the two top-down passes achieve
40:11 A way to encode the top-level error derivatives
48:28 A consequence of using temporal derivatives to code error derivatives
48:40 The next problem
50:18 Now a miracle occurs
56:44 Why does feedback alignment work?

Stanford Seminar - Can the brain do back-propagation? Geoffrey Hinton

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Learning Algorithm Of Biological Networks

Learning Algorithm Of Biological Networks

The 2025 Martin Lecture featuring Geoffrey Hinton — Boltzmann Machines

The 2025 Martin Lecture featuring Geoffrey Hinton — Boltzmann Machines

Stanford CME295 Transformers & LLMs | Autumn 2025 | Lecture 1 - Transformer

Stanford CME295 Transformers & LLMs | Autumn 2025 | Lecture 1 - Transformer

Will AI outsmart human intelligence? - with 'Godfather of AI' Geoffrey Hinton

Will AI outsmart human intelligence? - with 'Godfather of AI' Geoffrey Hinton

Meet a Nobel laureate: A conversation with University Professor Emeritus Geoffrey Hinton

Meet a Nobel laureate: A conversation with University Professor Emeritus Geoffrey Hinton

Stanford CS230 | Autumn 2025 | Lecture 1: Introduction to Deep Learning

Stanford CS230 | Autumn 2025 | Lecture 1: Introduction to Deep Learning

"Godfather of AI" Geoffrey Hinton: The 60 Minutes Interview

Джеффри Хинтон — Революция нейронных сетей

Джеффри Хинтон — Революция нейронных сетей

Dendrites: Why Biological Neurons Are Deep Neural Networks

Dendrites: Why Biological Neurons Are Deep Neural Networks

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Jen-Hsun Huang: Stanford student and Entrepreneur, co-founder and CEO of NVIDIA

Jen-Hsun Huang: Stanford student and Entrepreneur, co-founder and CEO of NVIDIA

LIVE: Swedish academy announces winners of 2024 Nobel Prize in Physics

LIVE: Swedish academy announces winners of 2024 Nobel Prize in Physics

Geoffrey Hinton: The Foundations of Deep Learning

Geoffrey Hinton: The Foundations of Deep Learning

Geoffrey Hinton: Will AI Save the World or End it? | The Agenda

Geoffrey Hinton: Will AI Save the World or End it? | The Agenda

Yoshua Bengio - Deep learning and Backprop in the Brain (CCN 2017)

Yoshua Bengio - Deep learning and Backprop in the Brain (CCN 2017)

Stanford CS231N Deep Learning for Computer Vision | Spring 2025 | Lecture 1: Introduction

Stanford CS231N Deep Learning for Computer Vision | Spring 2025 | Lecture 1: Introduction

Geoffrey Hinton reveals the surprising truth about AI’s limits and potential

Geoffrey Hinton reveals the surprising truth about AI’s limits and potential

Geoffrey Hinton – Capsule Networks

Geoffrey Hinton – Capsule Networks

AI pioneer Geoffrey Hinton discusses the probability of machines taking over

AI pioneer Geoffrey Hinton discusses the probability of machines taking over

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]