Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Complex Analysis - Toeplitz's Theorem and Its Application

Автор: MathWU悟数

Загружено: 2026-01-08

Просмотров: 141

Описание:

(1) Prove Toeplitz's theorem.
Suppose (a_nk) is an infinite matrix of complex numbers (n, k = 1, 2, ...) which satisfies
(i) \sum_{k=1}^{infinity} |a_nk| not greater than A for n = 1, 2, ...;
(ii) lim_{n to infinity} a_nk = 0 for k = 1, 2, ...;
(iii) lim_{n to infinity} (\sum_{k=1}^{infinity} a_nk) = 1.
Then, for any positive integer n and any convergent {zeta_n} the series \sum_{k=1}^{infinity} a_nk zeta_k is convergent. Moreover, if z_n = \sum_{k=1}^{infinity} a_nk zeta_k, then lim_{n to infinity} z_n exists and equal lim_{n to infinity} zeta_n.

(2) Prob 3.3 in "Theory of Functions of a Complex Variable (Vol 1)" - A.I. Markushevich, p.55
Prov that if lim_{n to infinity} z_n = zeta, then
lim_{n to infinity} (z_1 + ... + z_n)/n = zeta.
More generally, prove that if lim_{n to infinity} z_n = zeta, then
lim_{n to infinity} (c_1z_1 + ... + c_nz_n)/(c_1 + ... + c_n) = zeta,
where c_1, c_2, ..., c_n, ... is any sequence of positive numbers such that
lim_{n to infinity} (c_1 + ... + c_n) = + infinity.

Complex Analysis - Toeplitz's Theorem and Its Application

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Introduction to Quantum Mechanics (2E) - Griffiths. Prob 4.6: Orthonormality of Legendre Polynomials

Introduction to Quantum Mechanics (2E) - Griffiths. Prob 4.6: Orthonormality of Legendre Polynomials

Complex Analysis - If limsup |c_n|^{1/n} = q, \sum c_n converges absolutely if q less 1, diverges if

Complex Analysis - If limsup |c_n|^{1/n} = q, \sum c_n converges absolutely if q less 1, diverges if

Complex Analysis -Markushevich's book1 Prob 9.3, 9.4: Root of order k of a polynomial

Complex Analysis -Markushevich's book1 Prob 9.3, 9.4: Root of order k of a polynomial

Only 1% Can Solve This Math Problem!

Only 1% Can Solve This Math Problem!

Mathematical Analysis

Mathematical Analysis

Задание 1 (Задачи на умножение матриц и линейные отображения)

Задание 1 (Задачи на умножение матриц и линейные отображения)

Complex Analysis - Convergence of a series

Complex Analysis - Convergence of a series

10th Exercise, Optimization for Machine Learning, Sose 2023, LMU Munich

10th Exercise, Optimization for Machine Learning, Sose 2023, LMU Munich

Aryna Sabalenka vs Anastasia Potapova Highlights | Australian Open 2026

Aryna Sabalenka vs Anastasia Potapova Highlights | Australian Open 2026

JAKUCK, ROSJA 2026: PRZETRWANIE W TEMPERATURZE -71°C! - NAJZIMNIEJSZE MIASTO NA ŚWIECIE DOKUMENTALNY

JAKUCK, ROSJA 2026: PRZETRWANIE W TEMPERATURZE -71°C! - NAJZIMNIEJSZE MIASTO NA ŚWIECIE DOKUMENTALNY

Dlaczego POLSKA ZAWSZE będzie lepsza od UKRAINY?

Dlaczego POLSKA ZAWSZE będzie lepsza od UKRAINY?

The Method of Partial Fractions for Integration

The Method of Partial Fractions for Integration

ZIELIŃSKI Z GOLEM! CO ZA FORMA POLAKA! INTER PRĘŻY MUSKUŁY, PODPUŚCILI I SKASOWALI | SKRÓT

ZIELIŃSKI Z GOLEM! CO ZA FORMA POLAKA! INTER PRĘŻY MUSKUŁY, PODPUŚCILI I SKASOWALI | SKRÓT

Lin Shidong vs Darko Jorgic | MS QF | WTT Contender Muscat 2026

Lin Shidong vs Darko Jorgic | MS QF | WTT Contender Muscat 2026

LIVE |12th Maths |7.Probability Distribution|One Shot|MARATHON का महायुद्ध 5.0|Rahul Sir

LIVE |12th Maths |7.Probability Distribution|One Shot|MARATHON का महायुद्ध 5.0|Rahul Sir

Complex Analysis - nth roots of a complex number

Complex Analysis - nth roots of a complex number

2 Questions of PhD Qualifying Exam for Analysis (McGill, 2009-05)

2 Questions of PhD Qualifying Exam for Analysis (McGill, 2009-05)

Stan Wawrinka's Final Point and Retirement Speech | Australian Open 2026

Stan Wawrinka's Final Point and Retirement Speech | Australian Open 2026

To, co Chiny budują teraz, odbierze ci mowę

To, co Chiny budują teraz, odbierze ci mowę

Complex Analysis - Analytic Functions; Cauchy-Riemann Equations

Complex Analysis - Analytic Functions; Cauchy-Riemann Equations

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com