Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Agentic AI Meets Iceberg: The Future of Scalable Enterprise Data Intelligence.

Автор: Dremio

Загружено: 2026-01-14

Просмотров: 3

Описание:

The enterprise data landscape has undergone a dramatic evolution. A decade ago, data resided in rigid, separate systems: transactional databases for operations and data warehouses for business intelligence. This fragmentation led to inefficiencies, delays, and limited insights from critical data assets.

Today, Apache Iceberg is revolutionizing this space by unifying transactional and analytical data. Through Change Data Capture (CDC) and modern data engineering, companies are consolidating data into Iceberg tables, creating a permanent, versioned, and scalable historical record on object storage. Iceberg's capabilities in versioning, schema evolution, and metadata management ensure comprehensive data lineage and efficient storage at scale.

However, scale and storage efficiency alone do not translate to intelligence. Current AI-driven analytics approaches, such as RAG for unstructured documents or SQL queries for structured data, fall short. They lack the deep, contextual business intelligence needed to solve complex enterprise problems.

The true solution lies in integrating Agentic AI with Iceberg. Unlike basic search or query generation, Agentic AI deploys autonomous agents that can reason, hypothesize, explore data relationships, and adapt their analysis—much like a human analytics team. These agents leverage Iceberg's unified data, encompassing both current operational data and historical context, to uncover previously unattainable insights.

This session will delve into three crucial architectural considerations for implementing AI on Iceberg:

•Shift to On-Premises AI Deployment: The emergence of powerful, open-source AI models enables enterprises to deploy AI on-premises. This eliminates the need to move sensitive data to the cloud, significantly reduces infrastructure costs, and enhances data privacy and control.
•Building the "Business Understanding Brain": AI agents require a deep understanding of not only data structures but also the business logic, relationships, and domain knowledge embedded within Iceberg schemas. This necessitates intelligent schema interpretation and data sampling.
•Code Generation Over SQL Generation: For complex analytics, generating code (e.g., Python, Rust) offers greater flexibility and robustness than SQL generation. This enables sophisticated data processing, real-time reasoning, and integration capabilities that SQL alone cannot provide.
By combining Iceberg's unified data architecture with Agentic AI's reasoning capabilities and the flexibility of on-premises deployment, enterprises can transform their data lakes from passive archives into intelligent, evolving business partners. This marks the next evolution in data intelligence, delivering actionable insights at scale while maintaining enterprise security, privacy, and operational control.

Agentic AI Meets Iceberg: The Future of Scalable Enterprise Data Intelligence.

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Why is Everyone Talking About Apache Iceberg™?

Why is Everyone Talking About Apache Iceberg™?

AI Semantic Layer  - The Foundation of Intelligent Agents

AI Semantic Layer - The Foundation of Intelligent Agents

Streaming with Iceberg   From Zero to Hero

Streaming with Iceberg From Zero to Hero

Getting Started With: Fraud Analytics

Getting Started With: Fraud Analytics

Хранилище данных против озера данных против хранилища данных | ETL, OLAP против OLTP

Хранилище данных против озера данных против хранилища данных | ETL, OLAP против OLTP

Provisioning Apache Iceberg in Azure Synapse - Theory and Practical

Provisioning Apache Iceberg in Azure Synapse - Theory and Practical

Apache Iceberg v3 - Evolving the Open Table Standard for the Phase of the Iceberg Lakehouse

Apache Iceberg v3 - Evolving the Open Table Standard for the Phase of the Iceberg Lakehouse

SQL Data Warehouse Portfolio Project

SQL Data Warehouse Portfolio Project

Granicus: Building a Zero Copy Data Mesh with Dremio's Intelligent Semantic Optimization

Granicus: Building a Zero Copy Data Mesh with Dremio's Intelligent Semantic Optimization

Bye Oracle, Hello Dremio

Bye Oracle, Hello Dremio

An Extremely Technical Overview of How Apache Iceberg Planning Actually Works (Russell Spitzer)

An Extremely Technical Overview of How Apache Iceberg Planning Actually Works (Russell Spitzer)

AWS re:Invent 2025 - Building AI Agents with Kiro, MCP, and Amazon Bedrock AgentCore (DEV331)

AWS re:Invent 2025 - Building AI Agents with Kiro, MCP, and Amazon Bedrock AgentCore (DEV331)

The Medallion Data Architecture (Pros & Cons)

The Medallion Data Architecture (Pros & Cons)

Apache Iceberg Vs. Delta Lake Vs. Apache Hudi! Data Lake Storage Solutions Compared!

Apache Iceberg Vs. Delta Lake Vs. Apache Hudi! Data Lake Storage Solutions Compared!

The Man Behind Google's AI Machine | Demis Hassabis Interview

The Man Behind Google's AI Machine | Demis Hassabis Interview

Трамп опять презирает Зеленского?

Трамп опять презирает Зеленского?

Agentic Data Engineering with Dremio

Agentic Data Engineering with Dremio

Empowering the Modern Data Ecosystem: Unlocking Value Through the Dremio Semantic Layer

Empowering the Modern Data Ecosystem: Unlocking Value Through the Dremio Semantic Layer

Apache Arrow, the Hostage Negotiator   Revisiting the Case for Client Protocol Redesign

Apache Arrow, the Hostage Negotiator Revisiting the Case for Client Protocol Redesign

Watch me Cleaning Data in minutes with SQL

Watch me Cleaning Data in minutes with SQL

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com