Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Microsoft Semantic Kernel: Production Architecture for AI Agents

Автор: Mukul Raina

Загружено: 2025-12-10

Просмотров: 90

Описание:

Microsoft Semantic Kernel: Production Architecture for AI Agents

A comprehensive technical deep dive into Microsoft's Semantic Kernel—the AI orchestration SDK designed for production enterprise systems. Learn the core abstractions (Kernel, Plugins, Planners, Memory), integration patterns with Azure OpenAI, and production deployment strategies for building robust AI applications that scale.

================
What you will learn:
================
Semantic Kernel Fundamentals
What Semantic Kernel is and why Microsoft built it
Core philosophy: orchestration over implementation
Semantic Kernel vs LangChain: architectural differences and trade-offs
When to choose Semantic Kernel for enterprise AI systems

The Kernel: Central Orchestration
Kernel architecture and lifecycle management
Service registration and dependency injection patterns
Configuring AI services (Azure OpenAI, OpenAI, local models)
Builder pattern for flexible kernel construction

Plugins: Extending LLM Capabilities
Native functions vs semantic functions
Plugin architecture and design patterns
Creating custom plugins for enterprise integrations
Function calling and automatic function selection

Planners: Autonomous Task Orchestration
Planner types: Sequential, Stepwise, Handlebars
When to use planners vs explicit orchestration
Planner limitations and failure modes
Production considerations: cost, latency, reliability

Memory & Context Management
Semantic memory architecture
Vector store integrations (Azure AI Search, Qdrant, Pinecone)
Conversation history and context window management
RAG patterns with Semantic Kernel

Connectors & Integrations
Azure OpenAI connector configuration
Multi-model routing strategies
Integration with Microsoft Graph and enterprise services
Building custom connectors

Production Deployment Patterns
Error handling and retry strategies
Observability with OpenTelemetry
Token management and cost optimization
Security considerations for enterprise deployment

================
Timestamps:
================
[00:00] Introduction: AI Agents and the Orchestration Challenge
[00:23] What is Semantic Kernel? Microsoft's AI Orchestration SDK
[01:38] Mental Model: Semantic Kernel as Middleware Layer
[02:27] Where Semantic Kernel Fits in Production Architecture
[03:03] AI Provider Integration (Azure OpenAI, OpenAI, Hugging Face, Local Models)
[03:28] The Kernel Object: Central Orchestrator
[04:13] Kernel Stateless Design and Why It Matters
[04:41] Service Registration Methods
[05:35] Configuration Best Practices (Secrets, Timeouts, Lifetime)
[06:31] Plugins and Functions: Core Building Blocks
[08:03] Semantic Functions vs Native Functions
[09:00] Function Descriptions and Parameter Metadata
[09:33] Function Choice Behavior (Auto, Required, None)
[10:38] The Function Calling Loop Explained
[11:38] Making Function Calling Reliable in Production
[12:31] Memory and Embeddings
[13:26] Choosing Embedding Models
[14:34] Vector Store Considerations (Azure AI Search, Pinecone, Chroma)
[15:27] Planners Deprecation and the Process Framework
[17:35] When to Use Function Calling vs Process Framework
[18:12] Agent Framework (Now Generally Available)
[19:45] Building Effective Agents: Instructions and Plugins
[20:03] Multi-Agent Orchestration Patterns (Sequential, Concurrent, Handoff)
[21:03] Production Patterns: Error Handling and Resilience
[22:19] Observability and Debugging with OpenTelemetry
[23:58] Cost Management and Token Optimization
[24:04] When to Use Semantic Kernel
[25:07] When to Consider Alternatives
[26:56] Summary and Key Takeaways

================
About Me:
================
I'm Mukul Raina, a Senior Software Engineer and Tech Lead at Microsoft, with a Master's in Computer Science from the University of Oxford. On this channel, I create technical deep dives on System Design and ML/AI architectures.

#SemanticKernel #Microsoft #AIOrchestration #ProductionAI #AzureOpenAI #EnterpriseAI #AIArchitecture #LLM #Plugins #AIAgents #MLOps #DotNet #CSharp #AIEngineering #SystemDesign

Microsoft Semantic Kernel: Production Architecture for AI Agents

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Getting started with Agent Development Kit

Getting started with Agent Development Kit

Как устроены платежные системы и почему 25-летние монолиты все еще обрабатывают миллиарды транзакций

Как устроены платежные системы и почему 25-летние монолиты все еще обрабатывают миллиарды транзакций

Building Production RAG Systems: Architecture, Scaling & Cost Optimization

Building Production RAG Systems: Architecture, Scaling & Cost Optimization

Andrej Karpathy: Software Is Changing (Again)

Andrej Karpathy: Software Is Changing (Again)

FULL REMARKS: Nvidia's Jensen Huang Makes Bold AI Predictions At Davos | World Economic Forum

FULL REMARKS: Nvidia's Jensen Huang Makes Bold AI Predictions At Davos | World Economic Forum

Microsoft Agent Framework: AI Agents Architecture Deep Dive

Microsoft Agent Framework: AI Agents Architecture Deep Dive

Экспресс-курс RAG для начинающих

Экспресс-курс RAG для начинающих

Azure OpenAI Service: Production Architecture and Cost Optimization

Azure OpenAI Service: Production Architecture and Cost Optimization

⚡️ Кремль экстренно созвал Совбез || Путин принимает условия США

⚡️ Кремль экстренно созвал Совбез || Путин принимает условия США

Playlist,,Deep House,Music Played in Louis Vuitton Stores

Playlist,,Deep House,Music Played in Louis Vuitton Stores

Gary Marcus on the Massive Problems Facing AI & LLM Scaling | The Real Eisman Playbook Episode 42

Gary Marcus on the Massive Problems Facing AI & LLM Scaling | The Real Eisman Playbook Episode 42

Перетест Ai MAX+ 395 в жирном мини-ПК и тест AMD 8060s vs Intel B390

Перетест Ai MAX+ 395 в жирном мини-ПК и тест AMD 8060s vs Intel B390

Запуск нейросетей локально. Генерируем - ВСЁ

Запуск нейросетей локально. Генерируем - ВСЁ

ХИТЫ 2026🔝Лучшая Музыка 2026 🌊 Зарубежные песни Хиты 🌊 Популярные Песни Слушать Бесплатно 2026 #100

ХИТЫ 2026🔝Лучшая Музыка 2026 🌊 Зарубежные песни Хиты 🌊 Популярные Песни Слушать Бесплатно 2026 #100

Agentic RAG: Production Architecture Deep Dive

Agentic RAG: Production Architecture Deep Dive

Конец СВО приближается. Уиткофф едет к Путину. Трамп наехал на Макрона. Давос и немцы.

Конец СВО приближается. Уиткофф едет к Путину. Трамп наехал на Макрона. Давос и немцы.

Claude Code: полный гайд по AI-кодингу (хаки, техники и секреты)

Claude Code: полный гайд по AI-кодингу (хаки, техники и секреты)

Computer & Technology Basics Course for Absolute Beginners

Computer & Technology Basics Course for Absolute Beginners

GenAI Systems: 40% Cost Optimization Framework

GenAI Systems: 40% Cost Optimization Framework

Вайб-кодинг в Cursor AI: полный гайд + реальный пример проекта (подходы, техники, трюки)

Вайб-кодинг в Cursor AI: полный гайд + реальный пример проекта (подходы, техники, трюки)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com