Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

The geometry of ∞-categories, Clark Barwick | LMS

Автор: London Mathematical Society

Загружено: 2025-11-21

Просмотров: 153

Описание:

Abstract: Higher categories serve lots of purposes in mainstream mathematics. In this talk, I'll describe a construction that takes a suitable geometric object (such as a stratified space or scheme) X and produces an ∞-category that serves as the "stratified homotopy type" of X. I will then explain the sense in which this stratified homotopy type "knows" the constructible sheaves on X and their cohomology. Along the way, we will bear witness to an intimate relationship between certain higher categories and stratified geometry. This is joint work with Saul Glasman and Peter Haine.

This was the supporting lecture at the LMS General Meeting and Hardy Lecture 2025, which took place on 4 July 2025 at De Morgan House, London and online.

==========

The London Mathematical Society has, since 1865, been the UK's learned society for the advancement, dissemination and promotion of mathematical knowledge. Our mission is to advance mathematics through our members and the broader scientific community worldwide.

For further information:
► Website: https://www.lms.ac.uk
► Events: https://www.lms.ac.uk/events
► Grants and Prizes: https://www.lms.ac.uk/grants-prizes
► Publications: https://www.lms.ac.uk/publications
► Membership: https://www.lms.ac.uk/membership

Follow us:
► Twitter:   / londmathsoc  
► Facebook:   / londonmathematicalsociety  
► LinkedIn:   / the-london-mathematical-society  
► Youtube: ‪@LondonMathematicalSociety‬ ​

The geometry of ∞-categories, Clark Barwick | LMS

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Emily Riehl Makes Infinity Categories Elementary

Emily Riehl Makes Infinity Categories Elementary

Random processes and quasirandomness for decomposition problems, Julia Böttcher | LMS CSC 2025

Random processes and quasirandomness for decomposition problems, Julia Böttcher | LMS CSC 2025

Could ∞-category theory be taught to undergraduates or to a computer?, Emily Riehl | LMS

Could ∞-category theory be taught to undergraduates or to a computer?, Emily Riehl | LMS

A Sphere is a Loop of Loops (Visualizing Homotopy Groups)

A Sphere is a Loop of Loops (Visualizing Homotopy Groups)

David Tong (DAMTP, Cambridge): A Non-Supersymmetric 5d Fixed Point?

David Tong (DAMTP, Cambridge): A Non-Supersymmetric 5d Fixed Point?

1. History of Algebraic Topology; Homotopy Equivalence - Pierre Albin

1. History of Algebraic Topology; Homotopy Equivalence - Pierre Albin

What does a typical hyperbolic surface look like?, Laura Monk | LMS AGM 2025

What does a typical hyperbolic surface look like?, Laura Monk | LMS AGM 2025

What is algebraic geometry?

What is algebraic geometry?

Что такое...теория гомотопических типов?

Что такое...теория гомотопических типов?

01. Algebraic geometry - Sheaves (Nickolas Rollick)

01. Algebraic geometry - Sheaves (Nickolas Rollick)

What is...a covering space?

What is...a covering space?

A new perspective on Dirac-type results in hypergraphs, Richard Mycroft | LMS CSC 2025

A new perspective on Dirac-type results in hypergraphs, Richard Mycroft | LMS CSC 2025

Как «увидеть» четвертое измерение с помощью топологии

Как «увидеть» четвертое измерение с помощью топологии

Clark Barwick - 1/3 Exodromy for ℓ-adic Sheaves

Clark Barwick - 1/3 Exodromy for ℓ-adic Sheaves

4 часа Шопена для обучения, концентрации и релаксации

4 часа Шопена для обучения, концентрации и релаксации

Cohomology fractals

Cohomology fractals

Что такое коГомология и почему?

Что такое коГомология и почему?

⚡️ Военные США ликвидированы || Президент бьёт тревогу

⚡️ Военные США ликвидированы || Президент бьёт тревогу

Mathematical models of quantum chaos, Jens Marklof | LMS AGM 2025

Mathematical models of quantum chaos, Jens Marklof | LMS AGM 2025

Ravi Vakil: Algebraic geometry and the ongoing unification of mathematics

Ravi Vakil: Algebraic geometry and the ongoing unification of mathematics

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]