Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

AJS - Caterina Millevoi

Автор: SISSA SIAM Student Chapter

Загружено: 2024-07-19

Просмотров: 114

Описание:

Speaker: Caterina Millevoi (University of Padova)

Title: From Porous Media to Pandemics: Harnessing Physics-Informed Neural Networks

Abstract: In many engineering fields traditionally dominated by discretization methods for the numerical solution of differential equations, neural network models are increasingly playing a significant role in advancing scientific research. One such technique, Physics-Informed Neural Networks (PINNs), incorporates information from governing equations of a phenomenon into the data, including the residual as a constraint in the training process. These models are particularly promising for problems involving poorly understood processes, where it is computationally impractical to run simulations at desired spatial and temporal resolutions, or where some noisy data can be recorded in addition to initial and boundary conditions. This seminar will discuss various applications of PINNs for solving differential equation-based problems.
First, a PINN-based approach will be explored for reproducing coupled flow and deformation processes in geological porous media and identifying hydraulic and geomechanical parameters characterizing material properties in the governing hydro-poromechanical equations. A sensor-driven approach is introduced to accelerate convergence and enhance accuracy by integrating field data automatically during the training process. The investigation also considers the technique's application to parameter estimation in various settings, laying the groundwork for complex real-world applications like reservoir modeling.
Second, a synthetic SIR compartmental model of the COVID-19 pandemic will be presented featuring a PINN model. This model's potential to approximate the Susceptible, Infectious, and Recovered classes of the population during the epidemic is examined and the PINN's capability to solve an ill-posed inverse problem by estimating the reproduction number using real infectious data recorded in Italy during the COVID-19 pandemic is demonstrated. Additionally, the method is tested on short-term forecasting. In this context, a split-PINN approach, involving a two-step training process, is proposed. This method proves to be a computationally efficient alternative, outperforming traditional PINN training in terms of both accuracy and speed. The goal is to establish this technique in epidemiology to apply it to more complex models, providing quick, accurate answers to aid decision-making during pandemic events.

This seminar aims to provide a comprehensive overview of the versatility and potential of PINNs in addressing complex problems in hydro-poromechanics and epidemiology, highlighting the integration of deep learning with physics-based models to enhance predictive capabilities in these fields.

AJS - Caterina Millevoi

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

AJS - Riccardo Tenderini

AJS - Riccardo Tenderini

Analysis Seminar - Simone Brugiapaglia

Analysis Seminar - Simone Brugiapaglia

Berry Michael  - Geometric phases old and new

Berry Michael - Geometric phases old and new

Каспаров — о новых угрозах Путина, «дельцах» Трампа в Кремле и войне в Европе

Каспаров — о новых угрозах Путина, «дельцах» Трампа в Кремле и войне в Европе

AJS - Nicola Clinco

AJS - Nicola Clinco

Для Путина это провал. ХОДОРКОВСКИЙ и ПАСТУХОВ про мирные переговоры. Настроение россиян меняется

Для Путина это провал. ХОДОРКОВСКИЙ и ПАСТУХОВ про мирные переговоры. Настроение россиян меняется

Extending Molecular Dynamics Timescales for Biological Macromolecules through Machine Learning

Extending Molecular Dynamics Timescales for Biological Macromolecules through Machine Learning

Отъём жилья. Не только Долина. Статус S09E15

Отъём жилья. Не только Долина. Статус S09E15

Dr. Michele Ceriotti (EPFL) -- Physically (un)inspired modeling

Dr. Michele Ceriotti (EPFL) -- Physically (un)inspired modeling

An Introduction to Neural Models in Information Retrieval

An Introduction to Neural Models in Information Retrieval

Владимир Пастухов и Максим Курников | Интервью BILD

Владимир Пастухов и Максим Курников | Интервью BILD

A (very) Brief History of the Bernoulli Family

A (very) Brief History of the Bernoulli Family

Contracting and Gradient Dynamics (1/6), F Bullo, UC Santa Barbara, Sep 2023

Contracting and Gradient Dynamics (1/6), F Bullo, UC Santa Barbara, Sep 2023

Direction Moon: A Journey of our Satellite Navigation System Beyond its Limits

Direction Moon: A Journey of our Satellite Navigation System Beyond its Limits

S. Piccolo - TGF-beta signaling in development and cancer

S. Piccolo - TGF-beta signaling in development and cancer

Linear and nonlinear THz pulsed EPR of molecular and collective spins | Keith Nelson

Linear and nonlinear THz pulsed EPR of molecular and collective spins | Keith Nelson

Master Degree in Data Science - OPEN DAY  2019

Master Degree in Data Science - OPEN DAY 2019

Симоньян опять обидели. Лавров фантазирует. Дорохов и Губерниев шутят про Путина

Симоньян опять обидели. Лавров фантазирует. Дорохов и Губерниев шутят про Путина

A Journey through Artificial Intelligence – 4# Introduction to Large Language Models and ChatBots

A Journey through Artificial Intelligence – 4# Introduction to Large Language Models and ChatBots

Falling into a Black Hole — A Journey to General Relativity

Falling into a Black Hole — A Journey to General Relativity

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]