Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Crypto Forecasting using LSTM RNN in a Python Streamlit App | Is it any good?

Автор: Yiannis Pitsillides

Загружено: 2025-01-15

Просмотров: 2041

Описание:

In this video, we show you how to build a Streamlit app that uses an LSTM RNN model to predict cryptocurrency prices. The app is the centerpiece of this project, turning a complex machine learning pipeline into a user-friendly tool for real-time crypto forecasting.

Why the Streamlit App Stands Out:
The Streamlit app makes advanced crypto forecasting accessible to everyone. With a clean, intuitive interface, users can:
• Choose their crypto ticker symbol to analyze.
• Set the prediction horizon (number of days ahead).
• See real-time results with automated model retraining and predictions.
All the technical processes—data preparation, model training, and forecasting—happen seamlessly behind the scenes.

What the Streamlit App Offers:
1️⃣ Dynamic Inputs:
• Enter your preferred cryptocurrency ticker (e.g., BTC-USD) and the number of days ahead to forecast.
2️⃣ Automated Model Workflow:
• The app dynamically loads the data, preprocesses it for the LSTM model, and retrains the model for your selected crypto.
3️⃣ Real-Time Predictions:
• Displays the latest actual price and the predicted future price for the chosen ticker.
4️⃣ Interactive Visualizations:
• Plots showing:
o Actual historical prices.
o Predictions on the training and testing data.
o Forecasted prices for the selected prediction horizon.
5️⃣ Simplicity and Usability:
• The app provides a front-end interface that hides all the complexity of deep learning, letting users focus on insights instead of code.

Why Watch?
If you’re looking to deploy deep learning models in a way that’s practical, interactive, and accessible, this video is for you. The Streamlit app brings crypto forecasting to life, offering an easy-to-use tool that combines advanced LSTM RNNs with a sleek interface.

Subscribe for More! Learn how to build powerful machine learning models and turn them into interactive apps with Python and Streamlit. Let’s forecast the future together! 💹

🔗 Chapters:
00:00 – Intro
02:20 – Libraries & App Settings
03:50 – Sidebar Inputs
04:37 – Raw data & Data preprocessing
05:40 – Building LSTM Model
06:56 – Forecasting ahead
07:57 – Cards
08:50 – Final Plot
10:16 – Deploying the App
12:37 – Testing the App

Python Part 1:    • LSTM RNN for Forecasting Crypto Values – I...  
Streamlit Part 2:    • Crypto Forecasting using LSTM RNN in a Pyt...  

Github Link: https://github.com/Pitsillides91/pyth...
Connect with me on LinkedIn:   / yiannis-pitsillides-8b103271  
Follow me on X: https://x.com/pitsillides91

Crypto Forecasting using LSTM RNN in a Python Streamlit App | Is it any good?

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

How to use Binance API with Python to pull crypto data, analyse it (EMAs) and create a Streamlit App

How to use Binance API with Python to pull crypto data, analyse it (EMAs) and create a Streamlit App

LSTM RNN for Forecasting Crypto Values – Is it really that great?

LSTM RNN for Forecasting Crypto Values – Is it really that great?

Machine Learning Python Example | Predicting Football Player Market Value | XGBoost Model

Machine Learning Python Example | Predicting Football Player Market Value | XGBoost Model

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Predicting Bank Customer Churn with Machine Learning in Python | Streamlit App + Power BI Dashboard

Predicting Bank Customer Churn with Machine Learning in Python | Streamlit App + Power BI Dashboard

What is LSTM (Long Short Term Memory)?

What is LSTM (Long Short Term Memory)?

30 Days of Python

30 Days of Python

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Deep House Mix 2024 | Deep House, Vocal House, Nu Disco, Chillout Mix by Diamond #3

Deep House Mix 2024 | Deep House, Vocal House, Nu Disco, Chillout Mix by Diamond #3

Scraping Data from a Real Website | Web Scraping in Python

Scraping Data from a Real Website | Web Scraping in Python

K-Means Clustering Python Tutorial using PCA, Llama LLM, Streamlit & Power BI for Deployment

K-Means Clustering Python Tutorial using PCA, Llama LLM, Streamlit & Power BI for Deployment

Создайте свою первую модель машинного обучения на Python

Создайте свою первую модель машинного обучения на Python

Building a Machine Learning App in Python with Streamlit

Building a Machine Learning App in Python with Streamlit

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Creating a Streamlit App that Runs ARIMA to Forecast Crypto Values

Creating a Streamlit App that Runs ARIMA to Forecast Crypto Values

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

Unlocking the Future: How to Predict Weather with LSTM

Unlocking the Future: How to Predict Weather with LSTM

LSTM Time Series Forecasting Tutorial in Python

LSTM Time Series Forecasting Tutorial in Python

Complete Time Series Analysis and Forecasting with Python

Complete Time Series Analysis and Forecasting with Python

Поправки в Налоговый Кодекс приняли. Разбираем изменения

Поправки в Налоговый Кодекс приняли. Разбираем изменения

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]