Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Applications of Inequality - RMS, AM, GM, HM | Core Concepts & Tricks | Jee Mains | Advanced

Автор: IITian explains by Unacademy

Загружено: 2018-10-07

Просмотров: 53771

Описание:

Hello Guys, today we are going to explain applications of Famous inequality RMS greater than equal to AM greater than equal to GM greater than equal to HM. Its applications are used in Algebra, Trigonometry and calculus branch of mathematics. The relation can be proved mathematically and geometrically as well. Skipping the unnecessary proofs we are moving straight forward the application of the results from Jee Mains and advanced perspective.
At first, we have explained the terms root mean square(RMS), arithmetic mean (AM), Geometric Mean (GM) and harmonic Mean (HM). The most important thing in the inequality is that the equality holds only and only if all the numbers are equal.
We are going to drive a result using the inequality AM greater than equal to GM which is mostly used inequality in problems. According to the derived result sum of a number with its reciprocal is always greater than or equal to if the number is positive and the sum is greater than or equal to 2 if the number is negative and the sum is less than or equal to -2 if the number is negative.
using the obtained result we have discussed a problem of calculus which involves the concept of range of functions.
Later in the video lecture we have discussed plenty of examples keeping the important things in mind that while using the inequality we should always check for the equality conditions
We have discussed the applications of the result in trigonometry branch of mathematics also.

Thanks
Team IITian explains

Applications of Inequality - RMS, AM, GM, HM | Core Concepts & Tricks | Jee Mains | Advanced

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

🔥AM-GM Inequality for JEE Mains, Advanced & IOQM 💡#jeemain #jeeadvanced #jee

🔥AM-GM Inequality for JEE Mains, Advanced & IOQM 💡#jeemain #jeeadvanced #jee

Problem-Solving Trick No One Taught You: RMS-AM-GM-HM Inequality

Problem-Solving Trick No One Taught You: RMS-AM-GM-HM Inequality

Rank Booster for Jee Mains and Advanced || Mathematics || Volume-1 | Explained by IITian

Rank Booster for Jee Mains and Advanced || Mathematics || Volume-1 | Explained by IITian

Связь между AM, GM и HM | ЧАСТЬ 13 | Последовательность и ряд, класс 11 CBSE/JEE

Связь между AM, GM и HM | ЧАСТЬ 13 | Последовательность и ряд, класс 11 CBSE/JEE

Задача из вступительных Стэнфорда

Задача из вступительных Стэнфорда

Number of ways for the Formation of Numbers | P & C | Jee Advanced, Mains | Explained by IITian

Number of ways for the Formation of Numbers | P & C | Jee Advanced, Mains | Explained by IITian

Master AM-GM Inequality for JEE

Master AM-GM Inequality for JEE

Параметр с МОДУЛЕМ для ЕГЭ 2026 за 15 минут!

Параметр с МОДУЛЕМ для ЕГЭ 2026 за 15 минут!

Вложенные квадратные корни i.

Вложенные квадратные корни i.

JEE Delight | 4 vital inequalities | AM GM HM | Weighted mean | Mth power | Power mean inequality

JEE Delight | 4 vital inequalities | AM GM HM | Weighted mean | Mth power | Power mean inequality

A.M.,G.M.,H.M. Inequality I AM GM HM I Minimum value I Maximum Value

A.M.,G.M.,H.M. Inequality I AM GM HM I Minimum value I Maximum Value

Ellingham Diagram in Metallurgy || Super-Tricks and Core Concept || IIT Jee Mains | Advanced | NEET

Ellingham Diagram in Metallurgy || Super-Tricks and Core Concept || IIT Jee Mains | Advanced | NEET

PRMO 2021 - INEQUALTIES | AM - GM INEQUALITY | PRMO Exam | PRMO Preparation | Abhay Mahajan | VOS

PRMO 2021 - INEQUALTIES | AM - GM INEQUALITY | PRMO Exam | PRMO Preparation | Abhay Mahajan | VOS

Rank Booster for Jee Mains and Advanced || Mathematics || Volume-2 | Explained by IITian

Rank Booster for Jee Mains and Advanced || Mathematics || Volume-2 | Explained by IITian

Комплексные числа. Как мнимое стало реальным // Vital Math

Комплексные числа. Как мнимое стало реальным // Vital Math

Самая Сложная Задача В Истории Самой Сложной Олимпиады

Самая Сложная Задача В Истории Самой Сложной Олимпиады

Steric Inhibition of Resonance and Ortho Effect | Super-Concept & Tricks | Jee Advanced | AIIMS

Steric Inhibition of Resonance and Ortho Effect | Super-Concept & Tricks | Jee Advanced | AIIMS

Sequence and Series # 6 | AM GM HM Relations | Weighted AM GM HM | AM of mth power | mth power of AM

Sequence and Series # 6 | AM GM HM Relations | Weighted AM GM HM | AM of mth power | mth power of AM

Most Powerful Rank Booster || Mathematics || IIT Jee Mains, Advance

Most Powerful Rank Booster || Mathematics || IIT Jee Mains, Advance

Sequence and Series | Relation Between AM and GM | Decoded 🧐 | JEE Main 2022 | JEE Maths | Vedantu

Sequence and Series | Relation Between AM and GM | Decoded 🧐 | JEE Main 2022 | JEE Maths | Vedantu

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com