Architecting the ML Research Experiment | Reproducible & AI-Assisted Machine Learning Workflow
Автор: bongoDev
Загружено: 2026-01-21
Просмотров: 7
In this free masterclass, Architecting the ML Research Experiment, we explore how modern machine learning research goes far beyond simply running code.
True research is about building a reproducible discovery engine — a structured, scientific workflow that ensures clarity, rigor, and integrity.
In this session, you will learn how to architect an end-to-end ML research workflow:
Research Question → Hypothesis → Experiment Design → Tracking → Analysis
🔍 What You’ll Learn:
Clean & Modular Experiment Design using PyTorch Lightning
Rigorous Metric Tracking & Artifact Management with MLflow
AI-Assisted Research Workflow using Gemini AI for:
Ethical code generation
Debugging & logic verification
Hypothesis refinement
🤖 Special Focus: AI-Assisted Research
Writing boilerplate research code faster with LLMs
Ethical prompt engineering for debugging and validation
Maintaining scientific integrity while using AI tools
🧰 Tech Stack Covered:
PyTorch · PyTorch Lightning · MLflow · Gemini AI
🎯 Session Highlights:
Live architectural demo
Building a thesis-ready ML research template from scratch
👨🏫 Mentor:
Masum Bhuiyan
Mentor, bongoDev | Lecturer, Jahangirnagar University
📌 This recording is perfect for students, researchers, and ML practitioners who want to design scalable, reproducible, and AI-augmented research workflows.
#MachineLearning #MLResearch #AIResearch #ReproducibleResearch #PyTorch #PyTorchLightning #MLflow #LLM #GeminiAI #DataScience #MLOps #AIinResearch #ResearchWorkflow
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: