7. Eckart-Young: The Closest Rank k Matrix to A
Автор: MIT OpenCourseWare
Загружено: 2019-07-18
Просмотров: 99053
MIT 18.065 Matrix Methods in Data Analysis, Signal Processing, and Machine Learning, Spring 2018
Instructor: Gilbert Strang
View the complete course: https://ocw.mit.edu/18-065S18
YouTube Playlist: • MIT 18.065 Matrix Methods in Data Analysis...
In this lecture, Professor Strang reviews Principal Component Analysis (PCA), which is a major tool in understanding a matrix of data. In particular, he focuses on the Eckart-Young low rank approximation theorem.
License: Creative Commons BY-NC-SA
More information at https://ocw.mit.edu/terms
More courses at https://ocw.mit.edu
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: