Residue Calculation for Higher-Order and Simple Poles — A Detailed Example
Автор: Math Infinitum
Загружено: 2025-12-29
Просмотров: 80
#complexanalysis #residuetheorem #calculus #maths #math #visualization #mathematics #manim #visualization #higherorderpole #residue #residuetheorem #theorems #theorem #complex #analysis #higher #order
#simple #pole #contour #integration #rules #quotient #quotient_rule #visualization #python #solved #examples #example
In this video, we solve a comprehensive problem involving the Residue Theorem in Complex Analysis.
We analyze the function:
f(z) = e^z / ((z+1)³ * (z-2))
Step-by-step solution visualized with Manim:
1. Identify Poles: Find the singularities and determine their orders (Pole at z=-1 is Order 3, Pole at z=2 is Simple).
2. Calculate Residue at Order 3 Pole: Apply the general formula for residues of order n, involving the second derivative and the quotient rule.
3. Calculate Residue at Simple Pole: Use the limit formula for simple poles to find the second residue.
4. Apply Residue Theorem: Visualize the contour enclosing both poles and calculate the final contour integral ∮ f(z) dz by summing the residues.
This example is perfect for understanding how to handle different types of singularities in one problem.
• Theorem: Every Convergent Sequence is Boun...
• Solving Differential Equation xy\,dx + (x+...
• Does it Converge or Diverge? Integral of 1...
• Integral of 1/x^2: Power Rule with Negativ...
• Complex Analysis: Finding the Laurent Seri...
• Metric Spaces: Definition, Axioms, and Exa...
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: