Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

NEURAL NETWORKS ARE WEIRD! - Neel Nanda (DeepMind)

Автор: Machine Learning Street Talk

Загружено: 2024-12-07

Просмотров: 108449

Описание:

Neel Nanda, a senior research scientist at Google DeepMind, leads their mechanistic interpretability team. In this extensive interview, he discusses his work trying to understand how neural networks function internally. At just 26 years old, Nanda has quickly become a prominent voice in AI research after completing his pure mathematics degree at Cambridge in 2020.

Nanda reckons that machine learning is unique because we create neural networks that can perform impressive tasks (like complex reasoning and software engineering) without understanding how they work internally. He compares this to having computer programs that can do things no human programmer knows how to write. His work focuses on "mechanistic interpretability" - attempting to uncover and understand the internal structures and algorithms that emerge within these networks.

SPONSOR MESSAGES:
***
CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments.
https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on ARC and AGI, they just acquired MindsAI - the current winners of the ARC challenge. Are you interested in working on ARC, or getting involved in their events? Goto https://tufalabs.ai/
***

SHOWNOTES, TRANSCRIPT, ALL REFERENCES (DONT MISS!):
https://www.dropbox.com/scl/fi/36dvtf...

We riff on:
How neural networks develop meaningful internal representations beyond simple pattern matching
The effectiveness of chain-of-thought prompting and why it improves model performance
The importance of hands-on coding over extensive paper reading for new researchers
His journey from Cambridge to working with Chris Olah at Anthropic and eventually Google DeepMind
The role of mechanistic interpretability in AI safety

NEEL NANDA:
https://www.neelnanda.io/
https://scholar.google.com/citations?...
https://x.com/NeelNanda5

Interviewer - Tim Scarfe

TOC:
1. Part 1: Introduction
[00:00:00] 1.1 Introduction and Core Concepts Overview

2. Part 2: Outside Interview
[00:06:45] 2.1 Mechanistic Interpretability Foundations

3. Part 3: Main Interview
[00:32:52] 3.1 Mechanistic Interpretability

4. Neural Architecture and Circuits
[01:00:31] 4.1 Biological Evolution Parallels
[01:04:03] 4.2 Universal Circuit Patterns and Induction Heads
[01:11:07] 4.3 Entity Detection and Knowledge Boundaries
[01:14:26] 4.4 Mechanistic Interpretability and Activation Patching

5. Model Behavior Analysis
[01:30:00] 5.1 Golden Gate Claude Experiment and Feature Amplification
[01:33:27] 5.2 Model Personas and RLHF Behavior Modification
[01:36:28] 5.3 Steering Vectors and Linear Representations
[01:40:00] 5.4 Hallucinations and Model Uncertainty

6. Sparse Autoencoder Architecture
[01:44:54] 6.1 Architecture and Mathematical Foundations
[02:22:03] 6.2 Core Challenges and Solutions
[02:32:04] 6.3 Advanced Activation Functions and Top-k Implementations
[02:34:41] 6.4 Research Applications in Transformer Circuit Analysis

7. Feature Learning and Scaling
[02:48:02] 7.1 Autoencoder Feature Learning and Width Parameters
[03:02:46] 7.2 Scaling Laws and Training Stability
[03:11:00] 7.3 Feature Identification and Bias Correction
[03:19:52] 7.4 Training Dynamics Analysis Methods

8. Engineering Implementation
[03:23:48] 8.1 Scale and Infrastructure Requirements
[03:25:20] 8.2 Computational Requirements and Storage
[03:35:22] 8.3 Chain-of-Thought Reasoning Implementation
[03:37:15] 8.4 Latent Structure Inference in Language Models

NEURAL NETWORKS ARE WEIRD! - Neel Nanda (DeepMind)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Нил Нанда – Механистическая интерпретируемость: Вихревой тур

Нил Нанда – Механистическая интерпретируемость: Вихревой тур

Richard Sutton – Father of RL thinks LLMs are a dead end

Richard Sutton – Father of RL thinks LLMs are a dead end

Our relationship with robot swarms - interview with Razanne Abu-Aisheh

Our relationship with robot swarms - interview with Razanne Abu-Aisheh

Как ИИ меняет производство

Как ИИ меняет производство

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

Почему RAG терпит неудачу — как CLaRa устраняет свой главный недостаток

Почему RAG терпит неудачу — как CLaRa устраняет свой главный недостаток

I Played with Clawdbot all Weekend - it's insane.

I Played with Clawdbot all Weekend - it's insane.

Davos 2026: Why the US Leads AI, GPU Diplomacy, and Robots on the Streets | #225

Davos 2026: Why the US Leads AI, GPU Diplomacy, and Robots on the Streets | #225

Kimi K2.5 Is INSANE – Is This the BEST Open Source Model?

Kimi K2.5 Is INSANE – Is This the BEST Open Source Model?

If You Can't See Inside, How Do You Know It's THINKING? [Dr. Jeff Beck]

If You Can't See Inside, How Do You Know It's THINKING? [Dr. Jeff Beck]

Может ли у ИИ появиться сознание? — Семихатов, Анохин

Может ли у ИИ появиться сознание? — Семихатов, Анохин

We Can Monitor AI’s Thoughts… For Now | Google DeepMind's Neel Nanda

We Can Monitor AI’s Thoughts… For Now | Google DeepMind's Neel Nanda

Алгоритм памяти, вдохновлённый работой мозга

Алгоритм памяти, вдохновлённый работой мозга

Доработайте свою степень магистра права за 13 минут. Вот как

Доработайте свою степень магистра права за 13 минут. Вот как

Профессор Ю.Н. Харари: угрозы и риски ИИ в будущем (Давос 2026)

Профессор Ю.Н. Харари: угрозы и риски ИИ в будущем (Давос 2026)

AI can't cross this line and we don't know why.

AI can't cross this line and we don't know why.

Короткометражка «Апокалипсис ИИ» | Озвучка DeeaFilm

Короткометражка «Апокалипсис ИИ» | Озвучка DeeaFilm

The Singularity Countdown: AGI by 2029, Humans Merge with AI, Intelligence 1000x | Ray Kurzweil

The Singularity Countdown: AGI by 2029, Humans Merge with AI, Intelligence 1000x | Ray Kurzweil

The Real Reason Huge AI Models Actually Work [Prof. Andrew Wilson]

The Real Reason Huge AI Models Actually Work [Prof. Andrew Wilson]

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com