Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

1W-MINDS, Oct. 9: Anna Veselovska (Technical University of Munich), Gradient Descent and...

Автор: Mark Iwen

Загружено: 2025-10-09

Просмотров: 82

Описание:

Gradient Descent and Implicit Bias in Tensor Factorizations

Why does gradient descent, when run on highly over-parameterized models, prefer simple solutions? For matrices, this implicit bias toward low-rank structure is well established, but extending such results to tensors is much harder. In this talk, I will present our recent work that establishes implicit regularization in tensor factorizations under gradient descent. We focus on the tubal tensor product and the associated notion of tubal rank, motivated by applications to image data. Our results show that, in overparameterized settings, small random initialization plays a key role: it steers gradient descent toward solutions of low tubal rank. Alongside the theory, I will present simulations that illustrate how these dynamics shape the optimization trajectory. This work bridges a gap between the matrix and tensor cases and connects implicit regularization to a broader class of learning problems.

Joint work with Santhosh Karnik, Mark Iwen, and Felix Krahmer.

1W-MINDS, Oct. 9:  Anna Veselovska (Technical University of Munich),  Gradient Descent and...

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

1W-MINDS, Oct. 16:  Alex Cloninger (University of California, San Diego),  From Local Views to...

1W-MINDS, Oct. 16: Alex Cloninger (University of California, San Diego), From Local Views to...

1W-MINDS, Nov 6:  Bohan Chen (Caltech) Learning Enhanced Ensemble Filters

1W-MINDS, Nov 6: Bohan Chen (Caltech) Learning Enhanced Ensemble Filters

Tamara G. Kolda:

Tamara G. Kolda: "Tensor Decomposition"

1W-MINDS, May 15, 2025: Wei Zhu (Georgia Tech), Structure-preserving machine learning...

1W-MINDS, May 15, 2025: Wei Zhu (Georgia Tech), Structure-preserving machine learning...

1W-MINDS, Oct. 23:  Petar Nizić-Nikolac (ETH Zurich),  Matrix Chaos Inequalities and Chaos of...

1W-MINDS, Oct. 23: Petar Nizić-Nikolac (ETH Zurich), Matrix Chaos Inequalities and Chaos of...

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

25. Stochastic Gradient Descent

25. Stochastic Gradient Descent

1W-MINDS, Nov 13:  Bubacarr Bah (London School of Hygeine), Analysis of Gradient Descent for Deep...

1W-MINDS, Nov 13: Bubacarr Bah (London School of Hygeine), Analysis of Gradient Descent for Deep...

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

The Essential Main Ideas of Neural Networks

The Essential Main Ideas of Neural Networks

1W-Minds, May 8, 2025: Filip Elvander, Aalto University: Optimal transport for inverse problems in..

1W-Minds, May 8, 2025: Filip Elvander, Aalto University: Optimal transport for inverse problems in..

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Как LLM могут хранить факты | Глава 7, Глубокое обучение

1W-MINDS, Oct. 30:   Ethan Epperly (UC Berkeley)Column subset selection, active learning, and...

1W-MINDS, Oct. 30: Ethan Epperly (UC Berkeley)Column subset selection, active learning, and...

6. Singular Value Decomposition (SVD)

6. Singular Value Decomposition (SVD)

1W-MINDS, Nov. 20:  Haotian Jiang (University of Chicago), Beck-Fiala and Komlos Bounds Beyond ...

1W-MINDS, Nov. 20: Haotian Jiang (University of Chicago), Beck-Fiala and Komlos Bounds Beyond ...

Понимание вибрации и резонанса

Понимание вибрации и резонанса

1W-Minds, April 10, 2025: Daniel Herbst, Transferability of Graph Neural Networks: Beyond Message...

1W-Minds, April 10, 2025: Daniel Herbst, Transferability of Graph Neural Networks: Beyond Message...

1W-MINDS, Sept. 11, 2025:  Axel Flinth (Umeå University), Do neural networks learn symmetries in ...

1W-MINDS, Sept. 11, 2025: Axel Flinth (Umeå University), Do neural networks learn symmetries in ...

1W-MINDS, Sept. 4, 2025:  Claire Boyer (IMO), A statistical tour of physics-informed learning

1W-MINDS, Sept. 4, 2025: Claire Boyer (IMO), A statistical tour of physics-informed learning

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]