Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Emily Gorcenski - Polynomial Chaos: A technique for modeling uncertainty

Автор: PyData

Загружено: 2017-07-26

Просмотров: 15844

Описание:

Description
Parametric uncertainty is broadly difficult to quantify. In particular, when those parameters don't fit nice distributions it can be hard to generate reasonable simulations. Polynomial chaos is a somewhat obscure technique that leverages a natural connection between probability distributions and orthogonal polynomial families. This talk will demonstrate the technique and its applications.

Abstract
There is an intricate link between orthogonal polynomial families and well-known probability distributions. Known as Polynomial Chaos, this technique is largely unknown outside of some engineering fields. Nevertheless, the method allows us to model arbitrary distributions (with finite second moment) using distributions that are more familiar, e.g. the uniform or normal distributions. The polynomial chaos technique shifts the burden of understanding random variables to one of understanding deterministic series coefficients.

This method is particularly good for understanding dynamical systems with parametric uncertainty. The Polynomial Chaos expansion allows us to generate Monte Carlo simulations with far fewer simulation runs. In addition, we can use the method to quantify uncertainty in observations even when faced with small sample sizes. This talk will demonstrate the derivation of the technique and include some Python examples of ways it can be used to model systems and understand data in the presence of uncertainty. This will be a highly technical talk, touching on elements of measure-theoretic probability and functional analysis.

www.pydata.org

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases. 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Emily Gorcenski - Polynomial Chaos: A technique for modeling uncertainty

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Vincent D. Warmerdam - TNaaS - Tech Names as a Service

Vincent D. Warmerdam - TNaaS - Tech Names as a Service

Chris Fonnesbeck - Probabilistic Python: An Introduction to Bayesian Modeling with PyMC

Chris Fonnesbeck - Probabilistic Python: An Introduction to Bayesian Modeling with PyMC

Uncertainty Quantification of Nonlinear Systems

Uncertainty Quantification of Nonlinear Systems

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Eric Keiter (Sandia)  Polynomial Chaos Expansion PCE Methods with the Xyce Circuit simulator

Eric Keiter (Sandia) Polynomial Chaos Expansion PCE Methods with the Xyce Circuit simulator

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Causal Inference in Network Structures: Lessons learned From Financial Services

Causal Inference in Network Structures: Lessons learned From Financial Services

Это уравнение изменит ваш взгляд на мир

Это уравнение изменит ваш взгляд на мир

Trent McConaghy - Blockchains for Artificial Intelligence

Trent McConaghy - Blockchains for Artificial Intelligence

Моделирование Монте-Карло

Моделирование Монте-Карло

Основные теоремы в теории игр — Алексей Савватеев на ПостНауке

Основные теоремы в теории игр — Алексей Савватеев на ПостНауке

Bruno Sudret (ETH Zürich): Surrogate modelling approaches for stochastic simulators

Bruno Sudret (ETH Zürich): Surrogate modelling approaches for stochastic simulators

A Beginner's Guide to State Space Modeling

A Beginner's Guide to State Space Modeling

Uncertainty Quantification and Deep Learning ǀ Elise Jennings, Argonne National Laboratory

Uncertainty Quantification and Deep Learning ǀ Elise Jennings, Argonne National Laboratory

Может быть, некоторым людям стоит просто сдаться.

Может быть, некоторым людям стоит просто сдаться.

Mini Tutorial 6:  An Introduction to Uncertainty Quantification for Modeling & Simulation

Mini Tutorial 6: An Introduction to Uncertainty Quantification for Modeling & Simulation

Вейвлеты: математический микроскоп

Вейвлеты: математический микроскоп

4 часа Шопена для обучения, концентрации и релаксации

4 часа Шопена для обучения, концентрации и релаксации

Uncertainty quantification, surrogate building and active learning

Uncertainty quantification, surrogate building and active learning

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]