Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Introduction to Equivariant Cohomology - William Graham

Автор: Institute for Advanced Study

Загружено: 2025-01-22

Просмотров: 1726

Описание:

Special Year Seminar I
2:00pm|Simonyi 101
Topic: Introduction to Equivariant Cohomology
Speaker: William Graham
Affiliation: Institute for Advanced Study
Date: January 22, 2025 

Equivariant cohomology was introduced in the 1960s by Borel, and has been studied by many mathematicians since that time. The talks will be an introduction to some of this work. We will focus on torus-equivariant cohomology (as well as Borel-Moore homology and Chow groups), and examples related to flag varieties and Schubert varieties. After describing basic definitions and properties of these theories, we will consider localization theorems for torus applications, which relate the equivariant theories for a space to those of the fixed point locus.

We will define the equivariant multiplicity of a variety at a torus-fixed point. As an application of the localization theorems we will give a formulation of the integration formula (related to the Bott residue formula) which works for singular varieties. The equivariant cohomology of the flag variety is of interest both in geometry and combinatorics.

We will describe the equivariant cohomology of the flag variety from the point of view of convolution, as well as the use of divided difference operators to obtain representatives of Schubert classes in cohomology, and Bott-Samelson resolutions to obtain formulas for equivariant multiplicities.

Equivariant cohomology can be used to obtain information about singularities at torus-fixed points, and we will discuss the relation of equivariant cohomology to multiplicities, smoothness and rational smoothness. If time permits we may discuss joint work with Scott Larson on weighted flag varieties.

Introduction to Equivariant Cohomology - William Graham

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Introduction to Equivariant Cohomology (continued) - William Graham

Introduction to Equivariant Cohomology (continued) - William Graham

Pierre Deligne | What is the Hodge conjecture?

Pierre Deligne | What is the Hodge conjecture?

Introduction to Black Hole Thermodynamics -  Edward Witten

Introduction to Black Hole Thermodynamics - Edward Witten

Introduction to Equivariant K-theory - Dave Anderson

Introduction to Equivariant K-theory - Dave Anderson

Nima Arkani-Hamed: The End of Space-Time

Nima Arkani-Hamed: The End of Space-Time

Что такое...когомологии?

Что такое...когомологии?

Complexity and Gravity - Leonard Susskind

Complexity and Gravity - Leonard Susskind

Fundamental Groups of Algebraic Varieties and the Shafarevich Conjecture - Benjamin Thomas Bakker

Fundamental Groups of Algebraic Varieties and the Shafarevich Conjecture - Benjamin Thomas Bakker

Princeton Robotics - Russ Tedrake - Dexterous Manipulation with Diffusion Policies

Princeton Robotics - Russ Tedrake - Dexterous Manipulation with Diffusion Policies

Что такое...алгебраические многообразия?

Что такое...алгебраические многообразия?

Euler Systems in the Twisted Friedberg-Jacquet Setting - Shilin Lai

Euler Systems in the Twisted Friedberg-Jacquet Setting - Shilin Lai

What is a Motive? - Pierre Deligne

What is a Motive? - Pierre Deligne

Knots and Quantum Theory - Edward Witten

Knots and Quantum Theory - Edward Witten

Fourier-Mukai Transform for Tropical Abelian Varieties - Farbod Shokrieh

Fourier-Mukai Transform for Tropical Abelian Varieties - Farbod Shokrieh

What is Equivariant Cohomology & What is it Good for? by J. Peter May

What is Equivariant Cohomology & What is it Good for? by J. Peter May

2025-12-08, Tom Gannon, Coulomb branches and functoriality in the geometric Langlands program

2025-12-08, Tom Gannon, Coulomb branches and functoriality in the geometric Langlands program

Basic Notions Seminar Series: An introduction to cohomology, Speaker: Ben Mares

Basic Notions Seminar Series: An introduction to cohomology, Speaker: Ben Mares

Avi Wigderson: The value of errors in proofs

Avi Wigderson: The value of errors in proofs

Что такое коГомология и почему?

Что такое коГомология и почему?

Scott Tremaine (Institute for Advanced Study, Princeton) Celestial Mechanics I

Scott Tremaine (Institute for Advanced Study, Princeton) Celestial Mechanics I

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]