Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Dr. Paul Elvers: Getting Started with MLOps: Best Practices for Production-Ready ML Systems | PyData

Автор: PyData

Загружено: 2022-07-18

Просмотров: 3261

Описание:

www.pydata.org

MLOps (ML + DevOps) describes the necessary practices & techniques for maintaining machine learning (ML) models in production. Thinking about machine learning from an MLOps-perspective shifts the focus of attention towards how models behave “in the wild” rather than optimising the model performance on a recognised training data set (e.g. MNIST) in ml-research. Thinking of ML from an MLOps-perspective is crucial for a successful use of machine learning in any business. I present the core concepts of MLOps and share insights about useful tools and technologies for building a minimal working ML system.

About Dr. Paul Elvers

Dr. Paul Elvers is Head of AI/Data Science at Datadrivers, an IT Consulting Company in Hamburg. He graduated in Systematic Musicology & worked as a Research Fellow at the Max-Planck-Institute for empirical Aesthetics.

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases.

00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Dr. Paul Elvers: Getting Started with MLOps: Best Practices for Production-Ready ML Systems | PyData

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Effective Pandas I Matt Harrison I PyData Salt Lake City Meetup

Effective Pandas I Matt Harrison I PyData Salt Lake City Meetup

What is MLOps?

What is MLOps?

ML был сложным, пока я не узнал эти 5 секретов!

ML был сложным, пока я не узнал эти 5 секретов!

Ali Kohan - From €1M License to In-House Success: How We Built a Real-Time...- PyData Eindhoven 2025

Ali Kohan - From €1M License to In-House Success: How We Built a Real-Time...- PyData Eindhoven 2025

AWS Summit ANZ 2022 - End-to-end MLOps for architects (ARCH3)

AWS Summit ANZ 2022 - End-to-end MLOps for architects (ARCH3)

Ключевые навыки в области искусственного интеллекта к 2026 году

Ключевые навыки в области искусственного интеллекта к 2026 году

2025 год стал годом, когда искусственный интеллект переступил черту.

2025 год стал годом, когда искусственный интеллект переступил черту.

Tom Koopen - Finding trash in waste - PyData Eindhoven 2025

Tom Koopen - Finding trash in waste - PyData Eindhoven 2025

Появляется новый тип искусственного интеллекта, и он лучше, чем LLMS?

Появляется новый тип искусственного интеллекта, и он лучше, чем LLMS?

Design an ML Recommendation Engine | System Design

Design an ML Recommendation Engine | System Design

Q&A with Pyomo and HiGHS project teams

Q&A with Pyomo and HiGHS project teams

What Is MLOps ? | Introduction to MLOps | MLOps Explained | Simplilearn

What Is MLOps ? | Introduction to MLOps | MLOps Explained | Simplilearn

Jon Leiñena Otamendi - CompactifAI: Quantum-Inspired AI Model Compression - PyData Eindhoven 2025

Jon Leiñena Otamendi - CompactifAI: Quantum-Inspired AI Model Compression - PyData Eindhoven 2025

Sting - Shape of My Heart || Sylwester z Dwójką 2025

Sting - Shape of My Heart || Sylwester z Dwójką 2025

MLOps Best Practices in 2024

MLOps Best Practices in 2024

Intro to MLOps: Build, Deploy, and Retrain a Model in Production

Intro to MLOps: Build, Deploy, and Retrain a Model in Production

Jonathan Shi-Bridging Interactive Data Science and Big Data with Hybrid Execution-PyData Global 2025

Jonathan Shi-Bridging Interactive Data Science and Big Data with Hybrid Execution-PyData Global 2025

Annemarijn Blom - Identifying playstyles in football through spatial networks -PyData Eindhoven 2025

Annemarijn Blom - Identifying playstyles in football through spatial networks -PyData Eindhoven 2025

MLOps prerequisites and getting started | MLOps Roadmap | Podcast with Krish Naik

MLOps prerequisites and getting started | MLOps Roadmap | Podcast with Krish Naik

I achieved peak performance in python, here's how ... [PyCon DE & PyData Berlin 2024]

I achieved peak performance in python, here's how ... [PyCon DE & PyData Berlin 2024]

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]