Belief Miner: A Methodology for Discovering Causal Beliefs & Illusions from General Populations
Автор: visualAnalytics
Загружено: 2024-09-06
Просмотров: 13
Causal belief is a cognitive practice that humans apply everyday to reason about cause and effect relations between factors, phenomena, or events. Like optical illusions, humans are prone to drawing causal relations between events that are only coincidental (i.e., causal illusions). Researchers in domains such as cognitive psychology and healthcare often use logistically expensive experiments to understand causal beliefs and illusions. In this paper, we propose Belief Miner, a crowdsourcing method for evaluating people’s causal beliefs and illusions. Our method uses the (dis)similarities between the causal relations collected from the crowds and experts to surface the causal beliefs and illusions. Through an iterative design process, we developed a web-based interface for collecting causal relations from a target population. We then conducted a crowdsourced experiment with 101 workers on Amazon Mechanical Turk and Prolific using this interface and analyzed the collected data with Belief Miner. We discovered a variety of causal beliefs and potential illusions, and we report the design implications for future research.
This NSF-funded research was published by Shahreen Salim, Md Naimul Hoquem and Klaus Mueller in the ACM SIGCHI Conference on Computer-Supported Cooperative Work & Social Computing (CSCW)
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: