Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

What is Lie theory? Here is the big picture. | Lie groups, algebras, brackets #3

Автор: Mathemaniac

Загружено: 2023-08-10

Просмотров: 385311

Описание:

Part 4:    • Can we exponentiate d/dx? Vector (fields)?...  

A bird's eye view on Lie theory, providing motivation for studying Lie algebras and Lie brackets in particular.

Basically, Lie groups are groups and manifolds, and thinking about them as manifolds, we know that we want to understand Lie algebras; and thinking about them as groups, we know what additional structure we want on the Lie algebras - the Lie bracket.

YouTube, please do not demonetise this video for me saying “Tits group”. This is an actual mathematical object named after a French mathematician Jacques Tits.

This channel is meant to showcase interesting but underrated maths (and physics) topics and approaches, either with completely novel topics, or a well-known topic with a novel approach. If the novel approach resonates better with you, great! But the videos have never meant to be pedagogical - in fact, please please PLEASE do NOT use YouTube videos to learn a subject.

Files for download:
Go to https://www.mathemaniac.co.uk/download and enter the following password: so3embeddedin5dim

SO(3) embedded in R^5: http://at.yorku.ca/b/ask-an-algebraic...

https://en.wikipedia.org/wiki/Whitney... (n-dim manifold can be properly embedded in R^(2n): if you only want “the overall picture”, but perhaps distances are distorted)

https://en.wikipedia.org/wiki/Nash_em... (n-dim Riemannian manifold can be isometrically embedded in n(3n+11)/2 dim if compact, n(n+1)(3n+11)/2 dim if not compact: if you want everything to remain intact, i.e. distances are preserved)

BCH formula (why Lie brackets are useful): https://en.wikipedia.org/wiki/Baker%E...

Finite simple groups as building blocks: https://en.wikipedia.org/wiki/Composi...

Classification of finite simple groups: https://en.wikipedia.org/wiki/Classif...

Levi decomposition (the more precise meaning of “building blocks” in Lie algebra): https://en.wikipedia.org/wiki/Levi_de...

E8 (the monster group of Lie algebras):
https://aimath.org/E8/e8.html
https://en.wikipedia.org/wiki/E8_(mat...)
https://en.wikipedia.org/wiki/An_Exce...

Video chapters:
00:00 Introduction
01:26 Lie groups - groups
05:41 Lie groups - manifolds
10:23 Lie algebras
14:16 Lie brackets
18:03 The "Lie theory picture"

Other than commenting on the video, you are very welcome to fill in a Google form linked below, which helps me make better videos by catering for your math levels:
https://forms.gle/QJ29hocF9uQAyZyH6

If you want to know more interesting Mathematics, stay tuned for the next video!

SUBSCRIBE and see you in the next video!

If you are wondering how I made all these videos, even though it is stylistically similar to 3Blue1Brown, I don't use his animation engine Manim, but I use PowerPoint, GeoGebra, and (sometimes) Mathematica to produce the videos.

Social media:

Facebook:   / mathemaniacyt  
Instagram:   / _mathemaniac_  
Twitter:   / mathemaniacyt  
Patreon:   / mathemaniac   (support if you want to and can afford to!)
Merch: https://mathemaniac.myspreadshop.co.uk
Ko-fi: https://ko-fi.com/mathemaniac [for one-time support]

For my contact email, check my About page on a PC.

See you next time!

What is Lie theory? Here is the big picture. | Lie groups, algebras, brackets #3

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(20) { ["erA0jb9dSm0"]=> object(stdClass)#8422 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "erA0jb9dSm0" ["related_video_title"]=> string(91) "How to rotate in higher dimensions? Complex dimensions? | Lie groups, algebras, brackets #2" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> NULL } ["9CBS5CAynBE"]=> object(stdClass)#8397 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "9CBS5CAynBE" ["related_video_title"]=> string(91) "Can we exponentiate d/dx? Vector (fields)? What is exp? | Lie groups, algebras, brackets #4" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> NULL } ["mH0oCDa74tE"]=> object(stdClass)#8420 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "mH0oCDa74tE" ["related_video_title"]=> string(62) "Group theory, abstraction, and the 196,883-dimensional monster" ["posted_time"]=> string(19) "5 лет назад" ["channelName"]=> NULL } ["8DBhTXM_Br4"]=> object(stdClass)#8430 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "8DBhTXM_Br4" ["related_video_title"]=> string(30) "The Insane Math Of Knot Theory" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> NULL } ["Nc8Pxx24f-k"]=> object(stdClass)#8414 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "Nc8Pxx24f-k" ["related_video_title"]=> string(120) "Аксиома выбора: как Георг Кантор чуть не сломал математику [Veritasium]" ["posted_time"]=> string(27) "5 месяцев назад" ["channelName"]=> NULL } ["Ohrl3S2wcBU"]=> object(stdClass)#8431 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "Ohrl3S2wcBU" ["related_video_title"]=> string(48) "I finally find least action principle satisfying" ["posted_time"]=> string(27) "7 месяцев назад" ["channelName"]=> NULL } ["B2PJh2K-jdU"]=> object(stdClass)#8418 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "B2PJh2K-jdU" ["related_video_title"]=> string(80) "Matrix trace isn't just summing the diagonal | Lie groups, algebras, brackets #5" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> NULL } ["dxRf3vHbuoA"]=> object(stdClass)#8429 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "dxRf3vHbuoA" ["related_video_title"]=> string(29) "Why Do Sporadic Groups Exist?" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> NULL } ["_cr46G2K5Fo"]=> object(stdClass)#8408 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "_cr46G2K5Fo" ["related_video_title"]=> string(64) "The Man Who Almost Broke Math (And Himself...) - Axiom of Choice" ["posted_time"]=> string(27) "7 месяцев назад" ["channelName"]=> NULL } ["CwvuZ8aHyH4"]=> object(stdClass)#8433 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "CwvuZ8aHyH4" ["related_video_title"]=> string(74) "What is the square root of two? | The Fundamental Theorem of Galois Theory" ["posted_time"]=> string(21) "3 года назад" ["channelName"]=> NULL } ["60z_hpEAtD8"]=> object(stdClass)#8421 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "60z_hpEAtD8" ["related_video_title"]=> string(41) "A Swift Introduction to Geometric Algebra" ["posted_time"]=> string(19) "5 лет назад" ["channelName"]=> NULL } ["jsSeoGpiWsw"]=> object(stdClass)#8427 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "jsSeoGpiWsw" ["related_video_title"]=> string(41) "Monster Group (John Conway) - Numberphile" ["posted_time"]=> string(20) "11 лет назад" ["channelName"]=> NULL } ["KZeIEiBrT_w"]=> object(stdClass)#8415 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "KZeIEiBrT_w" ["related_video_title"]=> string(48) "The Strange Math That Predicts (Almost) Anything" ["posted_time"]=> string(25) "3 месяца назад" ["channelName"]=> NULL } ["mvmuCPvRoWQ"]=> object(stdClass)#8413 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "mvmuCPvRoWQ" ["related_video_title"]=> string(46) "Euler's formula with introductory group theory" ["posted_time"]=> string(19) "8 лет назад" ["channelName"]=> NULL } ["td7Nz9ATyWY"]=> object(stdClass)#8411 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "td7Nz9ATyWY" ["related_video_title"]=> string(60) "The Concept So Much of Modern Math is Built On | Compactness" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> NULL } ["QR1p0Rabuww"]=> object(stdClass)#8412 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "QR1p0Rabuww" ["related_video_title"]=> string(42) "Joan Solà - Lie theory for the Roboticist" ["posted_time"]=> string(19) "5 лет назад" ["channelName"]=> NULL } ["JGO5SwyIACA"]=> object(stdClass)#8409 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "JGO5SwyIACA" ["related_video_title"]=> string(155) "Коррупционный скандал в Украине | Окружение Зеленского и энергетика (English subtitles) @Max_Katz" ["posted_time"]=> string(23) "9 часов назад" ["channelName"]=> NULL } ["IPzwqAVfce4"]=> object(stdClass)#8410 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "IPzwqAVfce4" ["related_video_title"]=> string(53) "Spinors for Beginners 16: Lie Groups and Lie Algebras" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> NULL } ["QI7oUwNrQ34"]=> object(stdClass)#8398 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "QI7oUwNrQ34" ["related_video_title"]=> string(86) "Цепи Маркова — математика предсказаний [Veritasium]" ["posted_time"]=> string(23) "1 месяц назад" ["channelName"]=> NULL } ["2dwQUUDt5Is"]=> object(stdClass)#8399 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "2dwQUUDt5Is" ["related_video_title"]=> string(0) "" ["posted_time"]=> string(21) "3 года назад" ["channelName"]=> NULL } }
How to rotate in higher dimensions? Complex dimensions? | Lie groups, algebras, brackets #2

How to rotate in higher dimensions? Complex dimensions? | Lie groups, algebras, brackets #2

Can we exponentiate d/dx? Vector (fields)? What is exp? | Lie groups, algebras, brackets #4

Can we exponentiate d/dx? Vector (fields)? What is exp? | Lie groups, algebras, brackets #4

Group theory, abstraction, and the 196,883-dimensional monster

Group theory, abstraction, and the 196,883-dimensional monster

The Insane Math Of Knot Theory

The Insane Math Of Knot Theory

Аксиома выбора: как Георг Кантор чуть не сломал математику [Veritasium]

Аксиома выбора: как Георг Кантор чуть не сломал математику [Veritasium]

I finally find least action principle satisfying

I finally find least action principle satisfying

Matrix trace isn't just summing the diagonal | Lie groups, algebras, brackets #5

Matrix trace isn't just summing the diagonal | Lie groups, algebras, brackets #5

Why Do Sporadic Groups Exist?

Why Do Sporadic Groups Exist?

The Man Who Almost Broke Math (And Himself...) - Axiom of Choice

The Man Who Almost Broke Math (And Himself...) - Axiom of Choice

What is the square root of two? | The Fundamental Theorem of Galois Theory

What is the square root of two? | The Fundamental Theorem of Galois Theory

A Swift Introduction to Geometric Algebra

A Swift Introduction to Geometric Algebra

Monster Group (John Conway) - Numberphile

Monster Group (John Conway) - Numberphile

The Strange Math That Predicts (Almost) Anything

The Strange Math That Predicts (Almost) Anything

Euler's formula with introductory group theory

Euler's formula with introductory group theory

The Concept So Much of Modern Math is Built On | Compactness

The Concept So Much of Modern Math is Built On | Compactness

Joan Solà - Lie theory for the Roboticist

Joan Solà - Lie theory for the Roboticist

Коррупционный скандал в Украине | Окружение Зеленского и энергетика (English subtitles) @Max_Katz

Коррупционный скандал в Украине | Окружение Зеленского и энергетика (English subtitles) @Max_Katz

Spinors for Beginners 16: Lie Groups and Lie Algebras

Spinors for Beginners 16: Lie Groups and Lie Algebras

Цепи Маркова — математика предсказаний [Veritasium]

Цепи Маркова — математика предсказаний [Veritasium]

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]