Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Keynote: Judea Pearl - The New Science of Cause and Effect

Автор: PyData

Загружено: 2018-11-29

Просмотров: 64282

Описание:

PyData LA 2018

The talk will explain why data science should embrace an engine for processing cause-effect relationships. I will describe the structure of this engine, how it has revolutionized the data-intensive sciences, and how it is about to revolutions machine learning.

---

www.pydata.org

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases.

0:00 Speaker Introduction
1:00 Introduction
1:18 Talk Proverb
2:13 Talk Outline
5:11 Causal Models and the Cognitive Revolution
10:50 Typical Causal Questions & The Limitation of Standard Grammar of Science
18:15 The Ladder of Causation (3 Level Hierarchy)
26:36 Simpson's Paradox
31:00 Explainability Deep-Learning Style
34:26 Distinguish Seeing from Doing
36:19 The Two Fundamental Laws of Causal Inference
38:15 Reading Independencies
40:02 Structural Causal Model (SCM) Inference Engine
42:33 The Seven Pillars of Causal Wisdom
44:44 Pillar 5: External Validity and Sample Selection Bias
45:51 Pillar 5: The Problem in Real Life
47:06 Pillar 5: The Problem in Mathematics
49:16 Conclusion
51:56 Q&A 1: Opinion on Natural Experiments to Discover Causal Connections in Data
57:38 Q&A 2: Opinion on the Popularization of Statistics in News Media
1:01:30 Q&A 3

S/o to https://github.com/trfore for the video timestamps!

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Keynote: Judea Pearl - The New Science of Cause and Effect

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

Judea Pearl - The Science of Cause and Effect, from Theoretical Foundations to Personalized (...)

Judea Pearl - The Science of Cause and Effect, from Theoretical Foundations to Personalized (...)

Vincent Warmerdam: Winning with Simple, even Linear, Models | PyData London 2018

Vincent Warmerdam: Winning with Simple, even Linear, Models | PyData London 2018

CDSM22 Keynote Judea Pearl

CDSM22 Keynote Judea Pearl

Michael Johns: Propensity Score Matching: A Non-experimental Approach to Causal... | PyData NYC 2019

Michael Johns: Propensity Score Matching: A Non-experimental Approach to Causal... | PyData NYC 2019

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

What is causal inference, and why should data scientists know? by Ludvig Hult

What is causal inference, and why should data scientists know? by Ludvig Hult

Aleksander Molak - A Practical Guide to Causality in Python (For The Perplexed) | PyData NYC 2023

Aleksander Molak - A Practical Guide to Causality in Python (For The Perplexed) | PyData NYC 2023

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

Causality: From Aristotle to Zebrafish - Frederick Eberhardt - 10/16/2019

Causality: From Aristotle to Zebrafish - Frederick Eberhardt - 10/16/2019

Lectures on Causality: Jonas Peters, Part 1

Lectures on Causality: Jonas Peters, Part 1

Foundations of causal inference and its impacts on machine learning webinar

Foundations of causal inference and its impacts on machine learning webinar

Susan Athey: Counterfactual Inference (NeurIPS 2018 Tutorial)

Susan Athey: Counterfactual Inference (NeurIPS 2018 Tutorial)

14. Causal Inference, Part 1

14. Causal Inference, Part 1

Judea Pearl: Correlation and Causation | AI Podcast Clips

Judea Pearl: Correlation and Causation | AI Podcast Clips

Keynote: The Mathematics of Causal Inference: with Reflections on Machine Learning

Keynote: The Mathematics of Causal Inference: with Reflections on Machine Learning

Judea Pearl -- The Foundations of Causal Inference  [The Book of WHY]

Judea Pearl -- The Foundations of Causal Inference [The Book of WHY]

Keynote - Fairness and Diversity in Online Social Systems - Elisa Celis

Keynote - Fairness and Diversity in Online Social Systems - Elisa Celis

Patrick Blöbaum:  Performing Root Cause Analysis with DoWhy, a Causal Machine-Learning Library

Patrick Blöbaum: Performing Root Cause Analysis with DoWhy, a Causal Machine-Learning Library

Judea Pearl:

Judea Pearl: "Interpretability and explainability from a causal lens"

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]