Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Finding Meaning in Connections: A Practical Demo with NetworkX by Walker Hale from Python Enthusiast

Автор: He Zhu

Загружено: 2025-10-14

Просмотров: 16

Описание:

How do you analyze a dataset when its structure only makes sense as a web of interconnected events? In this talk, we’ll walk through a real-world (but redacted) example where traditional approaches failed—and where the Python library NetworkX offered a breakthrough. You'll see how graph-based analysis made it possible to identify clusters, uncover hidden structure, and extract actionable insights from seemingly chaotic data. No theory, just practical application.
#python
The video discusses a problem of tracking and analyzing complex approval processes for proposals, projects, or papers, where events are interconnected in a non-linear way, like forks in a GitHub repo.

The speaker explains that traditional data analysis tools like Excel, Pandas, or relational databases (SQL) struggle with this kind of hierarchical and networked data because of the intricate relationships between records (8:18).

To solve this, the video introduces the NetworkX Python library, which is designed for working with graphs. In this context, a graph is defined as circles (nodes) connected by lines (edges), often directed (10:01). The speaker demonstrates how to use NetworkX to:
Represent individual proposal events as "chains" (12:35).
Load these chains into a graph object (19:32).
Identify relationships between chains, such as parent-child relationships, roots, and leaves (21:06).
Decompose the main graph into "subgraphs" (constellations) to understand the full history of each proposal (20:45).
Finally, traverse these paths to extract meaningful business intelligence that would be impossible to do manually or with traditional tools (24:05).

The core idea is that when business intelligence depends on the linkages between data points (especially within the same table), graph-oriented tools like NetworkX become essential (26:54).

Finding Meaning in Connections: A Practical Demo with NetworkX by Walker Hale from Python Enthusiast

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(0) { }

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]