Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Basics of ARMA and ARIMA Modeling

Автор: CrunchEconometrix

Загружено: 2018-06-28

Просмотров: 105639

Описание:

ARMA/ARIMA is a method among several used in forecasting variables. Uses the information obtained from the variables itself to forecast its trend. The variable is regressed on its own past values. Based on univariate analysis. Knowing and analysing the probabilistic, or stochastic, properties of variables. Designed to forecast future movements. Uses the philosophy “let the variable speak for itself”. This concept is very relevant because it helps investors, government regulators, policy makers and relevant stakeholders take informed decision. In essence, information relating to the series are obtained from the series itself. The Box-Jenkins type time series models allow Yt to be explained by past, or lagged, values of Y itself and stochastic error terms (innovations or shocks). For this reason, ARMA models are sometimes called atheoretic models because they are not derived from any economic theory. The series is simply explaining itself using its historical data. ARMA is composed of two distinct models which explains the behaviour of a series from two different perspectives: the autoregressive (AR) models and the moving average (MA) models. We will also show that these models move in opposite directions of one another. Distinction between ARMA and ARIMA is the integration component which brings us back to the subject of stationarity. In reality, most economic variables are non-stationary hence they have to go through a transformation process called differencing before they become stationary. The transforming process is also called integration. So ARIMA informs the researcher or reader that the series in question has gone through an integration process before being used for any analysis. Hence, the moment a nonstationary variable is differenced before becoming stationary, such is known as an integrated variable. Since the essence of engaging an ARIMA model is to forecast a series, the B-J methodology uses four steps: identification, estimation, diagnostics and forecasting.

Follow up with soft-notes and updates from CrunchEconometrix:

Website: http://cruncheconometrix.com.ng
Blog: https://cruncheconometrix.blogspot.co...
Forum: http://cruncheconometrix.com.ng/blog/...
Facebook:   / cruncheconometrix  
YouTube Custom URL:    / cruncheconometrix  
Stata Videos Playlist:    • (Stata13):Estimate and Interpret Two-way A...  
EViews Videos Playlist:    • (EViews10):Interpret VECM, Forecast Error ...  

Basics of ARMA and ARIMA Modeling

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Определение моделей коррекции векторных ошибок #vecm #var #lags #Johansen #serialcorrelation #inn...

Определение моделей коррекции векторных ошибок #vecm #var #lags #Johansen #serialcorrelation #inn...

(EViews10): ARIMA Models (Identification) #arima #arma #boxjenkins #financialeconometrics

(EViews10): ARIMA Models (Identification) #arima #arma #boxjenkins #financialeconometrics

Модели ARIMA и метод Бокса-Дженкинса в Eviews — полное руководство, шаг за шагом!

Модели ARIMA и метод Бокса-Дженкинса в Eviews — полное руководство, шаг за шагом!

Time Series Forecasting Theory | AR, MA, ARMA, ARIMA | Data Science

Time Series Forecasting Theory | AR, MA, ARMA, ARIMA | Data Science

Модель скользящей средней для эконометрики временных рядов (Excel)

Модель скользящей средней для эконометрики временных рядов (Excel)

Что такое авторегрессионные (AR) модели

Что такое авторегрессионные (AR) модели

How to estimate arch model - eviews tutorial complete

How to estimate arch model - eviews tutorial complete

Обсуждение временных рядов: модель авторегрессии

Обсуждение временных рядов: модель авторегрессии

Финансовая система на грани: рубль, доллар и дроны | Михаил Хазин

Финансовая система на грани: рубль, доллар и дроны | Михаил Хазин

(EViews10): ARIMA Models (Estimation) #arima #arma #boxjenkins #financialeconometrics #timeseries

(EViews10): ARIMA Models (Estimation) #arima #arma #boxjenkins #financialeconometrics #timeseries

Что такое модели скользящей средней (MA)

Что такое модели скользящей средней (MA)

Time Series Analysis | Time Series Forecasting | Time Series Analysis In Excel | Simplilearn

Time Series Analysis | Time Series Forecasting | Time Series Analysis In Excel | Simplilearn

02417 Lecture 6 part B: Identifying order of ARIMA models

02417 Lecture 6 part B: Identifying order of ARIMA models

How to build ARIMA models in Python for time series forecasting

How to build ARIMA models in Python for time series forecasting

(EViews10): ARIMA Models (Forecasting) #arima #arma #boxjenkins #financialeconometrics #timeseries

(EViews10): ARIMA Models (Forecasting) #arima #arma #boxjenkins #financialeconometrics #timeseries

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Прогнозирование будущих продаж с использованием ARIMA и SARIMAX

Прогнозирование будущих продаж с использованием ARIMA и SARIMAX

Introduction to ARIMA Modelling

Introduction to ARIMA Modelling

Time Series Forecasting Theory Part 1 - Datamites Data Science Projects

Time Series Forecasting Theory Part 1 - Datamites Data Science Projects

ARIMA Models

ARIMA Models

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]