Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

How to Create Dictionaries in Informatica Cloud Data Quality?

Автор: Data360 By InventModel

Загружено: 2025-05-07

Просмотров: 38

Описание:

How to Create Dictionaries in Informatica Cloud Data Quality?

Yeah, hello, everyone. So this is Sujeet Patel. And again, I am back with the practical part of Dictionaries in Informatica Cloud Data Quality. So let's try to understand how we can go for practicals and all for creating dictionaries.

We know that a dictionary is one of the key assets in Informatica Cloud Data Quality (CDQ) and in any data quality tool. Let’s break it down in simple terms and understand what a dictionary is and how we can create and use one effectively.

If you’ve worked with any ETL tool, you might be familiar with lookup tables. For example, we often use lookup tables to retrieve information like gender, product details, or country names. You pass a product ID or country ID, and you get the corresponding details. This is exactly how lookups work—they help standardise and retrieve consistent information easily.

In CDQ, a dictionary serves a similar purpose. It is essentially a list of standardised values, just like lookup values, that can be reused across multiple workflows. For instance, in a bank, you might have different products like savings accounts, loans, or credit cards. Each product comes with a product code and a product description.

Instead of hardcoding these values everywhere in your data pipelines, it is best practice to maintain them in a single dictionary. This way, if you ever need to update or change a value, you can make the update in one place—the dictionary—and the change will reflect everywhere that dictionary is used.

Using dictionaries not only helps standardise your data quality rules and processes but also improves maintainability and consistency across your data flows. It ensures that you don’t have to modify multiple workflows manually if a value changes—just update the dictionary, and you’re good to go.

If you want to advance your career in data management, join our Informatica Cloud Data Quality training

📞 Call Now: +91-9821931210
📧 E-Mail: [email protected]
🌐 Visit Website: https://inventmodel.com/course/inform...

#InformaticaCDQ #CloudDataQuality #DataQuality #Informaticacdqtraining #InformaticaTraining #CDQ #MasterDataManagement #DataCleansing #DataIntegration #InformaticaCloud #DataGovernance #DataManagementcourses #CDQTraining #OnlineInformaticaTrainig #InformaticaMDM #CareerGrowth #OnlineLearning #CDQClouddataprofiling #IDMCReference360 #ETL #BigData #ITSolutions

How to Create Dictionaries in Informatica Cloud Data Quality?

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(10) { [0]=> object(stdClass)#5087 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "XFsYRGpy8lw" ["related_video_title"]=> string(92) "Cloud Data Profiling - Using Rules and Dictionaries to Parse, Standardize, and Validate Data" ["posted_time"]=> string(21) "3 года назад" ["channelName"]=> string(19) "Informatica Support" } [1]=> object(stdClass)#5060 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "jcBEdmD5MCU" ["related_video_title"]=> string(47) "Основы работы в Microsoft Power BI" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> string(14) "Nikolay Pavlov" } [2]=> object(stdClass)#5085 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "ZGKmNv_smPE" ["related_video_title"]=> string(75) "Informatica Data Quality | Practical Explanation of Deduplication Threshold" ["posted_time"]=> string(25) "3 недели назад" ["channelName"]=> string(22) "Data360 By InventModel" } [3]=> object(stdClass)#5092 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "P7bMMgU_0c4" ["related_video_title"]=> string(58) "Informatica CDQ Training Rule Logic Explained Practically" ["posted_time"]=> string(25) "3 недели назад" ["channelName"]=> string(22) "Data360 By InventModel" } [4]=> object(stdClass)#5071 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "wjZofJX0v4M" ["related_video_title"]=> string(148) "LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(11) "3Blue1Brown" } [5]=> object(stdClass)#5089 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "LgXzzu68j7M" ["related_video_title"]=> string(44) "Учебник по Excel за 15 минут" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(15) "Kevin Stratvert" } [6]=> object(stdClass)#5084 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "kmoA3NuTDtQ" ["related_video_title"]=> string(90) "Demo Data Profiling of Source Mapplet, Scorecard, and Rule Specification in Advanced Mode" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(22) "IICS Informatica Cloud" } [7]=> object(stdClass)#5094 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "nec3aZM8aUY" ["related_video_title"]=> string(83) "Deep House Mix 2024 | Deep House, Vocal House, Nu Disco, Chillout Mix by Diamond #3" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(7) "Diamond" } [8]=> object(stdClass)#5070 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "yXOgDuPYy4s" ["related_video_title"]=> string(76) "Informatica Data Quality Tutorial | How to Create Rule Specifications in CDQ" ["posted_time"]=> string(25) "3 недели назад" ["channelName"]=> string(22) "Data360 By InventModel" } [9]=> object(stdClass)#5088 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "EJzitviiv2c" ["related_video_title"]=> string(29) "КАК УСТРОЕН TCP/IP?" ["posted_time"]=> string(28) "10 месяцев назад" ["channelName"]=> string(7) "Alek OS" } }
Cloud Data Profiling - Using Rules and Dictionaries to Parse, Standardize, and Validate Data

Cloud Data Profiling - Using Rules and Dictionaries to Parse, Standardize, and Validate Data

Основы работы в Microsoft Power BI

Основы работы в Microsoft Power BI

Informatica Data Quality | Practical Explanation of Deduplication Threshold

Informatica Data Quality | Practical Explanation of Deduplication Threshold

Informatica CDQ Training  Rule Logic Explained Practically

Informatica CDQ Training Rule Logic Explained Practically

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Учебник по Excel за 15 минут

Учебник по Excel за 15 минут

Demo  Data Profiling of Source Mapplet, Scorecard, and Rule Specification in Advanced Mode

Demo Data Profiling of Source Mapplet, Scorecard, and Rule Specification in Advanced Mode

Deep House Mix 2024 | Deep House, Vocal House, Nu Disco, Chillout Mix by Diamond #3

Deep House Mix 2024 | Deep House, Vocal House, Nu Disco, Chillout Mix by Diamond #3

Informatica Data Quality Tutorial | How to Create Rule Specifications in CDQ

Informatica Data Quality Tutorial | How to Create Rule Specifications in CDQ

КАК УСТРОЕН TCP/IP?

КАК УСТРОЕН TCP/IP?

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]