Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Oriented circles and relativistic geometry II | Geometric Linear Algebra 35 | NJ Wildberger

Автор: Insights into Mathematics

Загружено: 2014-07-27

Просмотров: 5510

Описание:

We continue our discussion of oriented, or signed, or directed circles in the plane, which are also called cycles, and the intimate connection with relativistic geometry in three dimensions. This correspondence makes it easier for us to apply linear algebraic ideas to the geometry of circles, but it also provides an interesting geometrical interpretation of the framework of Einstein's Special Relativity. This theory was developed in the 19th century and is called cyclography, but it is not as well-known these days as it ought to be, and benefits from a purely algebraic development.

In this lecture we talk about the homothetic centre of two circles (sometimes also called a center of similitude), how to find this, and then describe a lovely theorem of G. Monge on the homothetic centres of three circles. Tangency of signed circles has a natural interpretation of the relativistic quadrance being zero, and we show how the locus of a circle tangent to two given ones has a relativistic meaning as an intersection of two cones, yielding a hyperbola of centres in the original plane. The famous problem of Apollonius makes its appearance.

We describe how spheres in the relativistic space, which appear as hyperboloids of one and two sheets, can be viewed from the point of view of circle geometry, involving interesting pencils of circles.

Finally we give a perhaps new theorem that describes the geometrical meaning of the relativistic quadrance between two signed circles.

This lecture has a lot of material in it, so go slowly!

Video Chapters:
00:00 Introduction
6:22 Lines of circles and homothetic centers
14:05 Monge's theorem
18:21 (Relativistic) quadrance between signed circles
22:15 Quadrance of zero
27:07 Mutually tangent circles
31:42 Problem of Apollonius
************************
Screenshot PDFs for my videos are available at the website http://wildegg.com. These give you a concise overview of the contents of the lectures for various Playlists: great for review, study and summary.

My research papers can be found at my Research Gate page, at https://www.researchgate.net/profile/...

My blog is at http://njwildberger.com/, where I will discuss lots of foundational issues, along with other things.

Online courses will be developed at openlearning.com. The first one, already underway is Algebraic Calculus One at https://www.openlearning.com/courses/... Please join us for an exciting new approach to one of mathematics' most important subjects!

If you would like to support these new initiatives for mathematics education and research, please consider becoming a Patron of this Channel at   / njwildberger   Your support would be much appreciated.

Oriented circles and relativistic geometry II | Geometric Linear Algebra 35 | NJ Wildberger

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Energy, momentum and linear algebra | Geometric Linear Algebra B 36 | NJ Wildberger

Energy, momentum and linear algebra | Geometric Linear Algebra B 36 | NJ Wildberger

Oriented circles and 3D relativistic geometry I | Geometric Linear Algebra B 34 | NJ Wildberger

Oriented circles and 3D relativistic geometry I | Geometric Linear Algebra B 34 | NJ Wildberger

An elementary introduction to Special Relativity I | Geometric Linear Algebra B 37 | NJ Wildberger

An elementary introduction to Special Relativity I | Geometric Linear Algebra B 37 | NJ Wildberger

49 минут, которые ИЗМЕНЯТ ваше понимание Вселенной | Владимир Сурдин

49 минут, которые ИЗМЕНЯТ ваше понимание Вселенной | Владимир Сурдин

What If You Keep Slowing Down?

What If You Keep Slowing Down?

Game of The Tournament || Lu Miaoyi vs Faustino Oro || Tata Steel Masters 2026

Game of The Tournament || Lu Miaoyi vs Faustino Oro || Tata Steel Masters 2026

I Played My GM Mom in an OFFICIAL Chess Tournament!!!!!

I Played My GM Mom in an OFFICIAL Chess Tournament!!!!!

Но почему площадь поверхности сферы в четыре раза больше ее тени?

Но почему площадь поверхности сферы в четыре раза больше ее тени?

ЗАНИМАТЕЛЬНАЯ ВЕРОЯТНОСТЬ. ЛЕКЦИЯ 21.11.2025 В РАМКАХ ЛЕКТОРИЯ ВДНХ

ЗАНИМАТЕЛЬНАЯ ВЕРОЯТНОСТЬ. ЛЕКЦИЯ 21.11.2025 В РАМКАХ ЛЕКТОРИЯ ВДНХ

This Equation Breaks Intuition

This Equation Breaks Intuition

Самый короткий тест на интеллект Задача Массачусетского профессора

Самый короткий тест на интеллект Задача Массачусетского профессора

Преломление и «замедление» света | По мотивам лекции Ричарда Фейнмана

Преломление и «замедление» света | По мотивам лекции Ричарда Фейнмана

Элементарное введение в специальную теорию относительности II | Геометрическая линейная алгебра B...

Элементарное введение в специальную теорию относительности II | Геометрическая линейная алгебра B...

Как считали число пи? [Veritasium]

Как считали число пи? [Veritasium]

Relativistic velocity, core circles and Paul Miller's protractor (I) | Rational Geometry MF142

Relativistic velocity, core circles and Paul Miller's protractor (I) | Rational Geometry MF142

The Craziest Experiment Humans Have Ever Built

The Craziest Experiment Humans Have Ever Built

Circles and spheres via dot products I | Geometric Linear Algebra A 31 | NJ Wildberger

Circles and spheres via dot products I | Geometric Linear Algebra A 31 | NJ Wildberger

The relativistic dot product | Geometric Linear Algebra B 33 | NJ Wildberger

The relativistic dot product | Geometric Linear Algebra B 33 | NJ Wildberger

Length contraction, time dilation and velocity addition | Wild Linear Algebra B 39 | NJ Wildberger

Length contraction, time dilation and velocity addition | Wild Linear Algebra B 39 | NJ Wildberger

✓ Формула Тейлора | матан #038 | Борис Трушин

✓ Формула Тейлора | матан #038 | Борис Трушин

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com