Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

LabelBench: A Comprehensive Framework for Benchmarking Adaptive Label-Efficient Learning

Автор: UWMadison MLOPT Idea Seminar

Загружено: 2024-02-23

Просмотров: 66

Описание:

Speaker: Jifan Zhang (https://jifanz.github.io/) from UW-Madison
Time: Oct 27, 2023, 12:30 PM – 1:30 PM CT
Location: Engineering Centers Building (1550 Engineering Drive) M1059 (M floor)
Abstract: Labeled data are critical to modern machine learning applications, but obtaining labels can be expensive. To mitigate this cost, machine learning methods, such as transfer learning, semi-supervised learning and active learning, aim to be label-efficient: achieving high predictive performance from relatively few labeled examples. While obtaining the best label-efficiency in practice often requires combinations of these techniques, existing benchmark and evaluation frameworks do not capture a concerted combination of all such techniques. This paper addresses this deficiency by introducing LabelBench, a new computationally-efficient framework for joint evaluation of multiple label-efficient learning techniques. As an application of LabelBench, we introduce a novel benchmark of state-of-the-art active learning methods in combination with semi-supervised learning for fine-tuning pretrained vision transformers. Our benchmark demonstrates better label-efficiencies than previously reported in active learning. LabelBench’s modular codebase is open-sourced for the broader community to contribute label-efficient learning methods and benchmarks. The repository can be found at: https://github.com/EfficientTraining/....
Bio: Jifan is a PhD student at UW-Madison working with Prof. Robert Nowak. His work focuses on label-efficient learning and its modern application to large-scale deep learning systems. He is also generally interested in human-in-the-loop learning and cross-disciplinary research that apply these methods in the real world.

LabelBench: A Comprehensive Framework for Benchmarking Adaptive Label-Efficient Learning

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Vector-Valued Variation Spaces and Width Bounds for DNNs: Insights on Weight Decay Regularization

Vector-Valued Variation Spaces and Width Bounds for DNNs: Insights on Weight Decay Regularization

Can MLLMs Perform Text-to-Image In-Context Learning? (Re-recorded version)

Can MLLMs Perform Text-to-Image In-Context Learning? (Re-recorded version)

System Design Concepts Course and Interview Prep

System Design Concepts Course and Interview Prep

Consistent Diffusion Models and Learning from Corrupted Data with Ambient Diffusion

Consistent Diffusion Models and Learning from Corrupted Data with Ambient Diffusion

Scalable Inference Algorithms for Large Language Models | Woomin Song, KAIST | AER LABS

Scalable Inference Algorithms for Large Language Models | Woomin Song, KAIST | AER LABS

24/7 Live Special Mix  | Chill & Relaxing Ocean Lounge 2026 🌊 by   @mellowflow7​

24/7 Live Special Mix | Chill & Relaxing Ocean Lounge 2026 🌊 by @mellowflow7​

Mechanism of feature learning in neural networks

Mechanism of feature learning in neural networks

Anticipation and the Anticipatory Music Transformer

Anticipation and the Anticipatory Music Transformer

Preventing Bird-Window Collisions at Your Home | University Place

Preventing Bird-Window Collisions at Your Home | University Place

ЗАЧЕМ ТРАМПУ ГРЕНЛАНДИЯ? / Уроки истории @MINAEVLIVE

ЗАЧЕМ ТРАМПУ ГРЕНЛАНДИЯ? / Уроки истории @MINAEVLIVE

Can Contrastive Learning Work? -  SimCLR Explained

Can Contrastive Learning Work? -  SimCLR Explained

Growing sorghum for silage

Growing sorghum for silage

In-context Language Learning and N-gram Heads

In-context Language Learning and N-gram Heads

In-lake Ecology 101

In-lake Ecology 101

HaloScope: Harnessing Unlabeled LLM Generations for Hallucination Detection.

HaloScope: Harnessing Unlabeled LLM Generations for Hallucination Detection.

«Когда мы что-то видим, мы всегда что-то не видим» // «Скажи Гордеевой»

«Когда мы что-то видим, мы всегда что-то не видим» // «Скажи Гордеевой»

Growing Grapes in Wisconsin | University Place

Growing Grapes in Wisconsin | University Place

Hardware-Aware Efficient Primitives for Machine Learning

Hardware-Aware Efficient Primitives for Machine Learning

Matryoshka Representation Learning and Adaptive Semantic Search

Matryoshka Representation Learning and Adaptive Semantic Search

Самая сложная модель из тех, что мы реально понимаем

Самая сложная модель из тех, что мы реально понимаем

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com