Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

MIT: Machine Learning 6.036, Lecture 4: Logistic regression (Fall 2020)

Автор: Tamara Broderick

Загружено: 2021-03-24

Просмотров: 20984

Описание:

Lecture 4 for the MIT course 6.036: Introduction to Machine Learning (Fall 2020 Semester)
Full lecture information and slides: http://tamarabroderick.com/ml.html
Lecture date: 2020 / 09 / 22
Lecturer: Tamara Broderick
Lecture TAs: Crystal Wang and Satvat Jagwani

If you find any ways to improve how well the video captions reflect the live lectures, please submit a pull request to: https://github.com/tbroderick/ml_6036...

0:00:00 Overview, review, and motivation
0:06:06 Capturing uncertainty
0:20:15 Linear logistic classification
0:45:51 Gradient descent
0:53:07 Gradient descent properties
1:00:03 Gradient descent for logistic regression
1:08:51 Logistic regression loss revisited
1:14:38 Logistic regression learning algorithm

MIT: Machine Learning 6.036, Lecture 4: Logistic regression (Fall 2020)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

MIT: Machine Learning 6.036, Lecture 5: Regression (Fall 2020)

MIT: Machine Learning 6.036, Lecture 5: Regression (Fall 2020)

Logistic Regression in Machine Learning: The Easiest Explanation Ever! | ML Tutorial | Intellipaat

Logistic Regression in Machine Learning: The Easiest Explanation Ever! | ML Tutorial | Intellipaat

MIT: Machine Learning 6.036, Lecture 1: Basics (Fall 2020)

MIT: Machine Learning 6.036, Lecture 1: Basics (Fall 2020)

Logistic Regression | ML-005 Lecture 6 | Stanford University | Andrew Ng 01 Classification 8 min

Logistic Regression | ML-005 Lecture 6 | Stanford University | Andrew Ng 01 Classification 8 min

MIT: Machine Learning 6.036, Lecture 6: Neural networks (Fall 2020)

MIT: Machine Learning 6.036, Lecture 6: Neural networks (Fall 2020)

Доступное объяснение ROC и AUC!

Доступное объяснение ROC и AUC!

How I think about Logistic Regression - Part 1

How I think about Logistic Regression - Part 1

MIT: Machine Learning 6.036, Lecture 2: Perceptrons (Fall 2020)

MIT: Machine Learning 6.036, Lecture 2: Perceptrons (Fall 2020)

Отказ от территорий? / Войска оставили позиции

Отказ от территорий? / Войска оставили позиции

Logistic Regression with Maximum Likelihood

Logistic Regression with Maximum Likelihood

The Key Equation Behind Probability

The Key Equation Behind Probability

Gradient Descent, Step-by-Step

Gradient Descent, Step-by-Step

Locally Weighted & Logistic Regression | Stanford CS229: Machine Learning - Lecture 3 (Autumn 2018)

Locally Weighted & Logistic Regression | Stanford CS229: Machine Learning - Lecture 3 (Autumn 2018)

Logistic Regression (and why it's different from Linear Regression)

Logistic Regression (and why it's different from Linear Regression)

MIT: Machine Learning 6.036, Lecture 12: Decision trees and random forests (Fall 2020)

MIT: Machine Learning 6.036, Lecture 12: Decision trees and random forests (Fall 2020)

Logistic Regression From Scratch in Python (Mathematical)

Logistic Regression From Scratch in Python (Mathematical)

Stanford CS109 Probability for Computer Scientists I Logistic Regression I 2022 I Lecture 24

Stanford CS109 Probability for Computer Scientists I Logistic Regression I 2022 I Lecture 24

Logistic regression : the basics - simply explained

Logistic regression : the basics - simply explained

Logistic Regression and the Perceptron Algorithm: A friendly introduction

Logistic Regression and the Perceptron Algorithm: A friendly introduction

MIT: Machine Learning 6.036, Lecture 3: Features (Fall 2020)

MIT: Machine Learning 6.036, Lecture 3: Features (Fall 2020)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com