Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Joel David Hamkins: Are there natural instances of nonlinearity in consistency strength?

Автор: Joel David Hamkins

Загружено: 2021-01-26

Просмотров: 1537

Описание:

This was a talk for the University of Wisconsin Madison Logic Seminar, January 25, 2021. http://jdh.hamkins.org/natural-instan...

Abstract. It is a mystery often mentioned in the foundations of mathematics that our best and strongest mathematical theories seem to be linearly ordered and indeed well-ordered by consistency strength. Given any two of the familiar large cardinal hypotheses, for example, generally one of them proves the consistency of the other. Why should this be? The phenomenon is seen as significant for the philosophy of mathematics, perhaps pointing us toward the ultimately correct mathematical theories. And yet, we know as a purely formal matter that the hierarchy of consistency strength is not well-ordered. It is ill-founded, densely ordered, and nonlinear. The statements usually used to illustrate these features are often dismissed as unnatural or as Gödelian trickery. In this talk, I aim to overcome that criticism—as well as I am able to—by presenting a variety of natural hypotheses that reveal ill-foundedness in consistency strength, density in the hierarchy of consistency strength, and incomparability in consistency strength.

The talk should be generally accessible to university logic students, requiring little beyond familiarity with the incompleteness theorem and some elementary ideas from computability theory.

Joel David Hamkins: Are there natural instances of nonlinearity in consistency strength?

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Joel David Hamkins: The Math Tea argument—must there be numbers we cannot describe or define?

Joel David Hamkins: The Math Tea argument—must there be numbers we cannot describe or define?

The Gödel incompleteness phenomenon

The Gödel incompleteness phenomenon

Climb to Infinity!

Climb to Infinity!

Geometry — a paragon of mathematical deduction?

Geometry — a paragon of mathematical deduction?

Nate Hagens: The End of Growth

Nate Hagens: The End of Growth

I DID IT!!!!!!!!

I DID IT!!!!!!!!

How we might have viewed the continuum hypothesis as a fundamental axiom necessary for mathematics

How we might have viewed the continuum hypothesis as a fundamental axiom necessary for mathematics

Magnus Carlsen BANGS the table AGAIN!!

Magnus Carlsen BANGS the table AGAIN!!

What is Computability?

What is Computability?

What is Proof?

What is Proof?

Обыграешь меня — дам $1 000 000», — смеялся профи, не зная, что дочь горничной — гений

Обыграешь меня — дам $1 000 000», — смеялся профи, не зная, что дочь горничной — гений

The Rise of Rigor in the Calculus

The Rise of Rigor in the Calculus

The covering reflection principle - Joel David Hamkins - Oberwolfach 2025

The covering reflection principle - Joel David Hamkins - Oberwolfach 2025

Joel David Hamkins: Modal model theory as mathematical potentialism

Joel David Hamkins: Modal model theory as mathematical potentialism

Set Theory and the Philosophy of Set Theory

Set Theory and the Philosophy of Set Theory

Are We Using the Wrong Kind Of Electricity?

Are We Using the Wrong Kind Of Electricity?

Czy Chiny szykują się na upadek Rosji?

Czy Chiny szykują się na upadek Rosji?

Joel David Hamkins: Categorical Cardinals

Joel David Hamkins: Categorical Cardinals

Harvey Friedman - Gödel's Incompleteness Theorems (Gödel Conference)

Harvey Friedman - Gödel's Incompleteness Theorems (Gödel Conference)

Джоэл Дэвид Хэмкинс: Теоретико-множественное воздействие как вычислительный процесс

Джоэл Дэвид Хэмкинс: Теоретико-множественное воздействие как вычислительный процесс

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]