End to End Production Legal AI Agents (MCP, Google ADK, Docling)
Автор: Dr. Maryam Miradi
Загружено: 2026-01-18
Просмотров: 263
Most developers build "happy path" agents. Watch me build a 5-step production-ready legal AI agent system using Google ADK, MCP standardization, and Docling and Gemini Pro 3 as LLM.
Perfect for developers, AI engineers, MLOps engineers, and AI practitioners building real-world AI Agents.
𝗙𝗿𝗲𝗲 𝗔𝗜 𝗔𝗴𝗲𝗻𝘁𝘀 𝗧𝗿𝗮𝗶𝗻𝗶𝗻𝗴: https://www.maryammiradi.com/go/free-...
𝟱-𝗶𝗻-𝟭 𝗔𝗜 𝗔𝗴𝗲𝗻𝘁𝘀 𝗧𝗿𝗮𝗶𝗻𝗶𝗻𝗴 (𝟱𝟲% 𝗢𝗙𝗙): https://maryammiradi.com/go/yt-desc
I Build in This Video:
Understands Business Constraints (PydanticAI)
Maps Data Reliability (Uncertainty Profiling)
Parses Complex Legal Docs (Benchmarking Docling vs. LlamaIndex vs. PyPDF)
Engineers the Flow (Google ADK Router & Auditor Agents)
Standardizes for Reusability (MCP Server)
👨💻 Tech Stack Used:
Google Agent Development Kit (ADK)
Google Antigravity
Google Gemini Pro
Docling (IBM)
Model Context Protocol (MCP)
PydanticAI
Python
Realted Videos:
I Built a €5.1B Vision Multi AI Agent Supply Chain (Gemini 3 Pro Vision, DeepSeek v3.2, LangGraph)
➡️ • I Built a €5.1B Vision Multi AI Agent Supp...
Build 9 AI Agent Projects. Stand Out as AI Engineer [+ Gemini 3 Pre-Agent Booster]
➡️ • Build 9 AI Agent Projects. Stand Out as AI...
💡 Key Concepts Covered:
✅ Fail-safe defaults that prevent naive agent behavior
✅ Input validation for regulatory compliance
✅ OCR confidence checking and document quality gates
✅ Human-in-the-loop escalation mechanisms
✅ Data surface mapping for uncertainty profiling
✅ Multi-agent routing with regeneration logic
✅ MCP server architecture for cross-project reuse
⏱️ Chapters & Timestamps:
00:00 - The problem with "Naive" Agent Building
00:30 - The "Happy Path" Setup (And why it fails) - LLM
02:40 - Step 1: Business Understanding (Pydantic State & Fail-Safes)
05:00 - Step 2: Data Understanding (Surface Mapping & Uncertainty)
07:50 - Step 3: Data Preparation (Benchmarking Docling vs. LlamaIndex)
10:29 - Step 4: Flow Engineering with Google ADK (Auditor & Router Agents)
13:17 - Running the Multi-Agent System
14:20 - Step 5: Reusability with MCP (Model Context Protocol)
15:15 - Building the MCP Server & Tools
16:30 - Combining Frameworks (LangGraph, CrewAI, Google ADK)
#AIAgents #AIEngineer #modelcontextprotocol #googleantigravity #productionai #langgraph #gemini3 #gemini3pro #MultiAgentSystems #AgenticAI #AIEngineering #AIArchitecture #AIProjects #AIUseCases #LangChain #CrewAI #Python #googleantigravity #airoadmap #googleantigravity #AIAgents #AIEngineer #modelcontextprotocol
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: