Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

How to Select Rows in Pandas DataFrame Based on Numpy Array First Column

Автор: vlogize

Загружено: 2025-05-27

Просмотров: 0

Описание:

Discover how to seamlessly filter rows in a Pandas DataFrame that match the first column values in a Numpy array. Learn with practical examples and step-by-step explanations.
---
This video is based on the question https://stackoverflow.com/q/65903465/ asked by the user 'Nicolas Rey' ( https://stackoverflow.com/u/13118338/ ) and on the answer https://stackoverflow.com/a/65904333/ provided by the user 'Vaishali' ( https://stackoverflow.com/u/6287308/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Python Pandas select rows in numpy array on first columns

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Select Rows in Pandas DataFrame Based on Numpy Array First Column

In the world of data processing using Python, particularly with libraries like Pandas and NumPy, you might encounter a common situation where you need to filter a DataFrame based on values from a Numpy array. This task can become intricate, especially when the array may vary in length. Here, we'll guide you through a step-by-step solution to effectively select rows in a Pandas DataFrame that match the first elements from a Numpy array.

The Problem

Suppose you have a Pandas DataFrame, df, with several columns, and a Numpy array, arr, which might contain numbers that you want to match against the first column of your DataFrame. Here's how your data looks:

Example DataFrame

[[See Video to Reveal this Text or Code Snippet]]

Example Numpy Arrays

[[See Video to Reveal this Text or Code Snippet]]

The goal is to filter df to get all the rows whose first elements match the first column of arr, which may have varying shapes.

The Solution

To tackle this problem effectively, you can convert the Numpy array into a DataFrame and use the merge function. Here’s how you can do it, along with examples for both arrays.

Step-by-Step Filter Process

Convert Numpy Array to DataFrame: Convert arr into a DataFrame for easier merging.

Merge with the Original DataFrame: Use the merge function to filter the rows based on the criteria.

Example Implementation

Here is how you can filter rows using the first example array arr1:

[[See Video to Reveal this Text or Code Snippet]]

Output:

[[See Video to Reveal this Text or Code Snippet]]

As we see, this output contains the rows where the values in the first column of df match those in arr1.

Handling Different Shapes

Pandas merge can handle arrays of different shapes, as long as the number of columns of arr does not exceed those of the DataFrame. For instance, if we use arr2:

[[See Video to Reveal this Text or Code Snippet]]

Output:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using the merge function efficiently allows you to filter rows in a Pandas DataFrame based on the contents of a Numpy array. By converting the array to a DataFrame and performing a merge, you can handle filtering even if the dimensions of your arrays change. This method is not only elegant but also scalable for a variety of data analysis tasks in Python.

With these techniques in hand, you are now better prepared to manipulate and filter data using Pandas and Numpy, unlocking more powerful data handling in Python.

How to Select Rows in Pandas DataFrame Based on Numpy Array First Column

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(10) { [0]=> object(stdClass)#4377 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "DCE6t3vNfvM" ["related_video_title"]=> string(90) "Python Pandas: Select, SLICE & FILTER Data rows & columns by Index or Conditionals" ["posted_time"]=> string(19) "5 лет назад" ["channelName"]=> string(30) "Programming and Math Tutorials" } [1]=> object(stdClass)#4350 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "yGNyn68JMJk" ["related_video_title"]=> string(93) "Select Rows and Columns in Pandas | Python Tutorial For Beginners | Select Data Conditionally" ["posted_time"]=> string(19) "5 лет назад" ["channelName"]=> string(6) "datagy" } [2]=> object(stdClass)#4375 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "D9FwM-76Cns" ["related_video_title"]=> string(70) "Selecting Rows in Pandas DataFrame Based on Conditions | GeeksforGeeks" ["posted_time"]=> string(21) "4 года назад" ["channelName"]=> string(13) "GeeksforGeeks" } [3]=> object(stdClass)#4382 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "iyrnPNBWIQ4" ["related_video_title"]=> string(161) "«Жить надо сегодня». Олег Тиньков и Майкл Калви о взлете нового финтех-стартапа Plata" ["posted_time"]=> string(19) "3 дня назад" ["channelName"]=> string(28) "Это Осетинская!" } [4]=> object(stdClass)#4361 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "i-FFVM4cIXQ" ["related_video_title"]=> string(138) "База по Базам Данных - Storage (Индексы, Paging, LSM, B+-Tree, R-Tree) | Влад Тен Систем Дизайн" ["posted_time"]=> string(25) "2 недели назад" ["channelName"]=> string(15) "Влад Тен" } [5]=> object(stdClass)#4379 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "wjZofJX0v4M" ["related_video_title"]=> string(148) "LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(11) "3Blue1Brown" } [6]=> object(stdClass)#4374 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "kCey8Srxx7c" ["related_video_title"]=> string(93) "Новейшая ракета РФ уничтожена / Жаркая ночь в Крыму" ["posted_time"]=> string(21) "4 часа назад" ["channelName"]=> string(10) "NEXTA Live" } [7]=> object(stdClass)#4384 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "nec3aZM8aUY" ["related_video_title"]=> string(83) "Deep House Mix 2024 | Deep House, Vocal House, Nu Disco, Chillout Mix by Diamond #3" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(7) "Diamond" } [8]=> object(stdClass)#4360 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "zmdjNSmRXF4" ["related_video_title"]=> string(89) "Python Pandas Tutorial (Part 2): DataFrame and Series Basics - Selecting Rows and Columns" ["posted_time"]=> string(19) "5 лет назад" ["channelName"]=> string(13) "Corey Schafer" } [9]=> object(stdClass)#4378 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "xxxtTnGPIMg" ["related_video_title"]=> string(67) "Pandas - Select Rows & Columns from DataFrame | iloc[] vs loc[]" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> string(19) "thisPointer Academy" } }
Python Pandas: Select, SLICE & FILTER Data rows & columns by Index or Conditionals

Python Pandas: Select, SLICE & FILTER Data rows & columns by Index or Conditionals

Select Rows and Columns in Pandas | Python Tutorial For Beginners | Select Data Conditionally

Select Rows and Columns in Pandas | Python Tutorial For Beginners | Select Data Conditionally

Selecting Rows in Pandas DataFrame Based on Conditions | GeeksforGeeks

Selecting Rows in Pandas DataFrame Based on Conditions | GeeksforGeeks

«Жить надо сегодня». Олег Тиньков и Майкл Калви о взлете нового финтех-стартапа Plata

«Жить надо сегодня». Олег Тиньков и Майкл Калви о взлете нового финтех-стартапа Plata

База по Базам Данных - Storage (Индексы, Paging, LSM, B+-Tree, R-Tree) | Влад Тен Систем Дизайн

База по Базам Данных - Storage (Индексы, Paging, LSM, B+-Tree, R-Tree) | Влад Тен Систем Дизайн

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Новейшая ракета РФ уничтожена / Жаркая ночь в Крыму

Новейшая ракета РФ уничтожена / Жаркая ночь в Крыму

Deep House Mix 2024 | Deep House, Vocal House, Nu Disco, Chillout Mix by Diamond #3

Deep House Mix 2024 | Deep House, Vocal House, Nu Disco, Chillout Mix by Diamond #3

Python Pandas Tutorial (Part 2): DataFrame and Series Basics - Selecting Rows and Columns

Python Pandas Tutorial (Part 2): DataFrame and Series Basics - Selecting Rows and Columns

Pandas - Select Rows & Columns from DataFrame | iloc[] vs loc[]

Pandas - Select Rows & Columns from DataFrame | iloc[] vs loc[]

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]