Support Vector Machines Secrets 7 Min Mein 😱 | Part 10
Автор: Rajat Kumar
Загружено: 2026-01-03
Просмотров: 31
Welcome to Rajat Kumar – Machine Learning & Data Science 🚀
This is the next video in the Machine Learning Basics Playlist (2026), where we explain Support Vector Machine (SVM) in simple Hinglish, using real-world Credit Risk examples.
In this short, practical tutorial (≈6-7 minutes), you’ll learn how SVM separates good vs bad customers, handles noisy & overlapping data, and why it’s trusted in banking for credit risk modeling.
🔍 What You Will Learn:
👉 What is SVM? – Hyperplane ka basic concept
👉 Margin & Support Vectors – real heroes of SVM
👉 Hard Margin vs Soft Margin – noisy data ke liye soft margin kyu important hai
👉 Kernel Trick – Linear, Polynomial, aur RBF kernel explained
👉 Why RBF kernel is most popular in Credit Risk modeling
👉 C parameter – balancing overfitting & underfitting
👉 SVM ki robust decision boundary – outliers ka kam asar
👉 Strengths – high-dimensional data, low overfitting risk
👉 Limitations – training slow, parameter tuning complex
👉 When to choose XGBoost or Neural Networks over SVM
Real Credit Risk Example:
Bank chahta hai aisi boundary jo good vs bad customers ko maximum safety margin ke saath separate kare — SVM exactly ye kaam karta hai.
🎯 Who Should Watch This:
✅ ML beginners & Data Science students
✅ Credit Risk / Banking professionals
✅ Anyone learning advanced classification models in 2026
⏱️ Timestamps:
00:00 – Playlist Intro & Why Choose SVM
00:23 – What is SVM? Hyperplane Concept
00:49 – Margin & Support Vectors Explained
01:41 – Hard Margin vs Soft Margin
02:07 – Kernel Trick (Linear, Polynomial, RBF)
02:59 – C Parameter & Regularization
03:26 – Decision Boundary & Outlier Robustness
04:17 – Strengths of SVM
04:42 – Limitations & Challenges
05:06 – Summary & What’s Coming Next
❓ Quick Question for Engagement:
Credit Risk modeling mein RBF kernel kyun zyada use hota hai?
💬 Comment mein apna jawab likho 👇
🔥 Like 👍 if you’re learning ML step by step
🔔 Subscribe & hit the bell for short, practical ML tutorials
🔁 Share with your ML friends
📚 Machine Learning Basics Playlist:
👉 • Machine Learning In 7 Minute
🙋 About Me:
I’m Rajat Kumar, sharing Machine Learning, Data Science & Credit Risk Modeling concepts in simple, practical Hinglish style, based on real banking & analytics use cases.
🔗 Useful Links:
👉 1:1 Mentorship / Career Guidance: https://topmate.io/rajat_kumar103/
👉 WhatsApp / Telegram Community: https://whatsapp.com/channel/0029Vb7Q...
👉 LinkedIn Profile: / rajat-kumar-1688ba11a
👉 Instagram : / rajat_alt_ctrl_delete
🔑 Search Queries:
svm explained in hindi
support vector machine credit risk example
rbf kernel banking ml
hyperplane margin svm
svm vs xgboost credit risk
classification algorithms in banking
#MachineLearning #SVM #SupportVectorMachine
#KernelTrick #RBFKernel #CreditRiskModeling
#MLBasics #ArtificialIntelligence #DataScience
#Hyperplane #MarginMaximization #MLinHindi
#MachineLearning2026 #RajatKumar
#Overfitting #Regularization #BankingML #XGBoost #NeuralNetworks
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: