Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

When do fractional differential equations have bounded solutions? Dr Chris Tisdell Live Stream

Автор: Dr Chris Tisdell

Загружено: 2016-03-14

Просмотров: 2447

Описание:

``Although fractional differential equations are centuries old, it is surprising to discover that much of the basic qualitative and quantitative foundational theory is yet to be fully developed" \cite{CCT}. This work addresses the following questions:
What are sufficient conditions under which fractional differential equations will have bounds on its solutions?
What are sufficient conditions under which fractional differential equations will have at least one solution?
This presentation features new research that will be published by the Electronic Journal of Differential Equations.

Electron. J. Diff. Equ., Vol. 2016 (2016), No. 84, pp. 1-9.
Basic existence and a priori bound results for solutions to systems of boundary value problems for fractional differential equations
http://ejde.math.txstate.edu/Volumes/...

References: (I forgot to show this in the vid)

[1] Aguila–Camacho, Norelys; Duarte–Mermoud, Manuel
A.; Gallegos, Javier A. Lyapunov functions for
fractional order systems. Commun. Nonlinear Sci.
Numer. Simul. 19 (2014), no. 9, 2951–2957.

Free ebook http://tinyurl.com/EngMathYT

When do fractional differential equations have bounded solutions?  Dr Chris Tisdell Live Stream

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Alternate solution to generalised Bernoulli equations via an integrating factor: An Exact Approach

Alternate solution to generalised Bernoulli equations via an integrating factor: An Exact Approach

The Precise Number of Solutions to Fractional Boundary Value Problems Via Shooting Methods ICFDA23

The Precise Number of Solutions to Fractional Boundary Value Problems Via Shooting Methods ICFDA23

Improved contraction methods for discrete boundary value problems

Improved contraction methods for discrete boundary value problems

More on First and Second Order Differential Equations.  How to Solve!?  Dr Chris Tisdell

More on First and Second Order Differential Equations. How to Solve!? Dr Chris Tisdell

Research in Mathematics

Research in Mathematics

Fourier Series of A Square Wave and some Partial Differential Equations. Dr Chris Tisdell

Fourier Series of A Square Wave and some Partial Differential Equations. Dr Chris Tisdell

Applied math for chemists

Applied math for chemists

JAKUCK, ROSJA 2026: PRZETRWANIE W TEMPERATURZE -71°C! - NAJZIMNIEJSZE MIASTO NA ŚWIECIE DOKUMENTALNY

JAKUCK, ROSJA 2026: PRZETRWANIE W TEMPERATURZE -71°C! - NAJZIMNIEJSZE MIASTO NA ŚWIECIE DOKUMENTALNY

Introduction to Ordinary Differential Equations.  Learn with Dr Chris Tisdell.

Introduction to Ordinary Differential Equations. Learn with Dr Chris Tisdell.

To, co Chiny budują teraz, odbierze ci mowę

To, co Chiny budują teraz, odbierze ci mowę

Fourier Series:  What are they?  How to calculate?  How to use them?  Dr Chris Tisdell

Fourier Series: What are they? How to calculate? How to use them? Dr Chris Tisdell

Matrix methods & Quadratic Forms;  Variation of Parameters to Solve Differential Equations.

Matrix methods & Quadratic Forms; Variation of Parameters to Solve Differential Equations.

Second Shifting Theorem of Laplace transforms. Dr Chris Tisdell

Second Shifting Theorem of Laplace transforms. Dr Chris Tisdell

Vibrating Systems and Variation of Parameters for Differential Equations.  Dr Chris Tisdell

Vibrating Systems and Variation of Parameters for Differential Equations. Dr Chris Tisdell

Laplace Transforms: First Shifting Theorem & Revision for Multivariable Calculus! Dr Chris Tisdell

Laplace Transforms: First Shifting Theorem & Revision for Multivariable Calculus! Dr Chris Tisdell

The Laplace Transform | The Second Shifting Theorem (Proof)

The Laplace Transform | The Second Shifting Theorem (Proof)

Introduction to Laplace transforms

Introduction to Laplace transforms

Revision on Matrix Methods, Quadratic Surfaces and Systems of Differential Equations.

Revision on Matrix Methods, Quadratic Surfaces and Systems of Differential Equations.

How to construct a parallelogram

How to construct a parallelogram

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com