Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

3D Scene Reconstruction from a Single Viewport - Maximilian Denninger (ECCV 2020)

3D Scene Reconstruction from a Single Viewport - Maximilian Denninger

3D

Scene

Reconstruction

Single Viewport

Maximilian Denninger

structure from motion

deep learning

machine learning

cartography

autonomous driving

image processing

photogrammetry

computer vision

scale invariant feature transform

Algorithm

Big Data

Cloud Computing

Neural networks

3d reconstruction from 2d images

3d scene reconstruction

3d reconstruction

blenderproc

eccv 2020

Автор: 2d3d.ai

Загружено: 21 окт. 2020 г.

Просмотров: 2 008 просмотров

Описание:

This is a two parts talk. It is based on the papers "3D Scene Reconstruction from a Single Viewport" presented at ECCV 2020 and the "BlenderProc" paper. The speaker is the main author of both papers. This is the recording of part 1.
Recording of part 2:    • Blender pipeline to generate images for de...  

References to everything covered in the talk:   / references_from_double_lecture_photorealistic  

00:00 Intro
02:57 Motivation
05:39 3D Representations
13:21 TSDF Compression
20:42 Tree Architecture
32:24 Loss Shaping
43:43 Data Generation
48:41 Qualitative Results
01:05:17 Summary
01:09:56 Discussion

[Chapters were auto-generated using our proprietary software - contact us if you are interested in access to the software]

Lecture abstract:

We present a novel approach to infer volumetric reconstructions from a single viewport, based only on a RGB image and a reconstructed normal image. The main contributions of reconstructing full scenes including the hidden and occluded areas will be discussed and their advantages in contrast to prior works which focused either on shape reconstruction of single objects floating in space or on complete scenes where either a point cloud or at least a depth image were provided. We propose to learn this information from synthetically generated high-resolution data. To do this, we introduce a deep network architecture that is specifically designed for volumetric TSDF data by featuring a specific tree net architecture. Our framework can handle a 3D resolution of 512³ by introducing a dedicated compression technique based on a modified autoencoder. Furthermore, we introduce a novel loss shaping technique for 3D data that guides the learning process towards regions where free and occupied space are close to each other.

git : https://github.com/DLR-RM/SingleViewR...
paper: https://tinyurl.com/singleviewreconst...

Presenter BIO:

Maximilian Denninger is currently pursuing his PhD at the German Aerospace Center (DLR), where he is a full-time researcher. His research goal is to improve the computer vision on mobile robots, where the training data is always scarce. At the DLR he heads the vision part of an exciting project called SMiLE, where the goal is to design and implement robots, which are able to assist people working in elderly homes. This includes a variety of tasks from semantic segmentation to scene reconstruction. As robots need a natural understanding of their environment to fulfill any kind of task. For that he and his colleagues created BlenderProc, which helps in the generation of data for the training of neural networks. He is advised for his PhD by his department head Dr. Rudolph Triebel, which also works for the Technical University of Munich (TUM), where Max also works as a teaching assistant to help teach the course "Maching Learning for Computer Vision".

Linkedin:   / maximilian-denninger  
Twitter:   / denningermax  

-------------------------
Find us at:

Newsletter for updates about more events ➜ http://eepurl.com/gJ1t-D
Sub-reddit for discussions ➜   / 2d3dai  
Discord server for, well, discord ➜   / discord  
Blog ➜ https://2d3d.ai

We are the people behind the AI consultancy Abelians ➜ https://abelians.com/

3D Scene Reconstruction from a Single Viewport - Maximilian Denninger (ECCV 2020)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Blender pipeline to generate images for deep learning (BlenderProc) - Maximilian Denninger

Blender pipeline to generate images for deep learning (BlenderProc) - Maximilian Denninger

Graph Neural Networks for Point Cloud Processing

Graph Neural Networks for Point Cloud Processing

Alexander Holleitner - Atomistic defects in 2D materials as quantum emitters   | Nano meets Quantum

Alexander Holleitner - Atomistic defects in 2D materials as quantum emitters | Nano meets Quantum

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Sensing Depth with 3D Computer Vision - Dr. Benjamin Busam

Sensing Depth with 3D Computer Vision - Dr. Benjamin Busam

Вопрос из собеседования в Google, на который никто не может ответить [Veritasium]

Вопрос из собеседования в Google, на который никто не может ответить [Veritasium]

Древний Рим за 20 минут

Древний Рим за 20 минут

Beginner Blender 4.0 Tutorial - Part 2: Basic Modelling

Beginner Blender 4.0 Tutorial - Part 2: Basic Modelling

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Музыка для работы - Deep Focus Mix для программирования, кодирования

Музыка для работы - Deep Focus Mix для программирования, кодирования

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]