Fabrizio Andreatta - On two mod p period maps: Ekedahl--Oort and fine Deligne--Lusztig (...)
Автор: Institut des Hautes Etudes Scientifiques (IHES)
Загружено: 2025-09-18
Просмотров: 314
Consider a Shimura variety of Hodge type admitting a smooth integral model S at an odd prime $p \gt 3$. Consider its perfectoid cover $S(p^\infty)$ and the Hodge-Tate period map introduced by A. Caraiani and P. Scholze. We compare the pull-back to $S(p^\infty)$ of the Ekedahl-Oort stratification on the mod p special fiber of S and the pull back to $S(p^\infty)$ of the fine Deligne-Lusztig stratification on the mod p special fiber of the flag variety which is the target of the Hodge-Tate period map. If time allowa, an application to the non-emptiness of Ekedhal-Oort strata is provided.
Fabrizio Andreatta (Univ. degli Studi di Milano)
===
Find this and many more scientific videos on https://www.carmin.tv/ - a French video platform for mathematics and their interactions with other sciences offering extra functionalities tailored to meet the needs of the research community.
===
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: