Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Why is it called the density matrix renormalization group? (T. E. Baker)

Автор: European Theoretical Spectroscopy Facility - ETSF

Загружено: 2021-09-24

Просмотров: 1098

Описание:

Solving models in quantum physics is of paramount importance to understanding a variety of physical phenomena. There are many methods that have been created to do this. Tensor networks are one strong candidate that have been extremely popular in solving models with local interactions [1,2]. These methods are motivated from a combination of information theory and renormalization group techniques. They also naturally compute the entanglement of a given model, making them useful for studies of topological physics. In comparison with quantum Monte Carlo methods, they have no sign problem. In comparison with exact diagonalization, the method circumvents the exponentially sized memory required and can be applied to hundreds or thousands of sites with a controlled error.

In this talk, I introduce a particular tensor network method known as the density matrix renormalization group [3]. This method works well in one dimension with local models, which apply to physically relevant models as provable with Kohn’s nearsightedness principle [4]. The method is applicable to many-body Hamiltonians which involve a quartic interaction term. The method can be applied to ab initio systems, although the limitations of the method often prevent an efficient solution for general systems. I will review the background theory of this method and explain its context for quantum chemistry systems [5,6]. All concepts are explained through the matrix product state formalism [7].

[1] Thomas E. Baker, Samuel Desrosiers, Maxime Tremblay, Martin Thompson “Méthodes de calcul avec réseaux de tenseurs en physique” Canadian Journal of Physics 99, 4 (2021); “Basic tensor network computations in physics” arxiv: 1911.11566

[3] Steven R. White, “Density matrix formulation for quantum renormalization groups” Phys. Rev. Lett. 69, 19 (1992)

[4] M.B. Hastings, “Locality in quantum and Markov dynamics on lattices and networks” Phys. Rev. Lett. 93, 140402 (2004)

[5] S.R. White, R.L. Martin "Ab initio quantum chemistry using the density matrix renormalization group" 110, 9 (1999)

[6] G.K.L. Chan, M. Head-Gordon, “Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group" J. Chem. Phys. 116, 11 (2002)

[7] Stellan Östlund and Stefan Rommer, “Thermodynamic limit of density matrix renormalization,” Phys. Rev. Lett. 75, 3537 (1995)

Why is it called the density matrix renormalization group? (T. E. Baker)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Exciton-phonon interaction revisited (F. Paleari)

Exciton-phonon interaction revisited (F. Paleari)

Перенормировка: искусство стирания бесконечности

Перенормировка: искусство стирания бесконечности

The Biggest Ideas in the Universe | 11. Renormalization

The Biggest Ideas in the Universe | 11. Renormalization

[OSF] Intro to Density Matrix Renormalization Group

[OSF] Intro to Density Matrix Renormalization Group

The Density Matrix - An Introduction

The Density Matrix - An Introduction

Grigory Tarnopolsky - “DMRG approach to QCD models”

Grigory Tarnopolsky - “DMRG approach to QCD models”

Junyi Zhang (Johns Hopkins U) Improving Mean-Field Theory for Quantum Magnets @ CMSA 5/13/2024

Junyi Zhang (Johns Hopkins U) Improving Mean-Field Theory for Quantum Magnets @ CMSA 5/13/2024

Crash course in density matrices

Crash course in density matrices

Introduction to Tensor Networks (Tutorial) by Philippe Corboz

Introduction to Tensor Networks (Tutorial) by Philippe Corboz

Агенты кодирования, ориентированные на будущее – Билл Чен и Брайан Фиока, OpenAI

Агенты кодирования, ориентированные на будущее – Билл Чен и Брайан Фиока, OpenAI

Donna Sheng, Density Matrix Renormalization Group Study of Doped Mott Insulator on Square Lattice

Donna Sheng, Density Matrix Renormalization Group Study of Doped Mott Insulator on Square Lattice

Multiscale Approaches for Computational Spectroscopy of Complex Systems (T. Giovannini)

Multiscale Approaches for Computational Spectroscopy of Complex Systems (T. Giovannini)

TMS18.L26. Frank Pollmann. Tensor networks and matrix product states (II)

TMS18.L26. Frank Pollmann. Tensor networks and matrix product states (II)

New Density Matrix Renormalization Group-based Methods for Molecular Simulations

New Density Matrix Renormalization Group-based Methods for Molecular Simulations

Mr. Nathan Fitzpatrick | A Framework for Spin-Adapted Quantum Simulation of Fermions

Mr. Nathan Fitzpatrick | A Framework for Spin-Adapted Quantum Simulation of Fermions

Quantum Wednesday: Efficient tensor-network simulations of weakly-measured quantum circuits

Quantum Wednesday: Efficient tensor-network simulations of weakly-measured quantum circuits

Quantum Spain Seminar: Advances in low-overhead quantum error correction

Quantum Spain Seminar: Advances in low-overhead quantum error correction

DFT for Superconductors: theory and implementation in the SIESTA code (R. Reho)

DFT for Superconductors: theory and implementation in the SIESTA code (R. Reho)

Remote electron-phonon interactions and screening in Van der Waals heterostructures (T. Sohier)

Remote electron-phonon interactions and screening in Van der Waals heterostructures (T. Sohier)

NA ŻYWO | Wystąpienie Premiera Donalda Tuska w Sejmie RP

NA ŻYWO | Wystąpienie Premiera Donalda Tuska w Sejmie RP

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]