Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Abstract Algebra: Definition of Subrings and Examples of Ideals in Ring Theory

Автор: MathSinger

Загружено: 2023-06-20

Просмотров: 621

Описание:

Subrings are subsets of rings, R, that are themselves rings with respect to the addition and multiplication that are defined on R. This video shows that a subset A of a ring R is a subring of R if it is closed with respect to the addition and multiplication that are defined on R, and if A is closed with respect to additive inverses. It is noted that since the ring R is abelian with respect to addition, that every subring of R is a normal subgroup of R with respect to addition. Therefore, every subring of a ring gives rise to a quotient group of R with respect to addition. The question is raised as to which of these subrings provides enough structure to permit the cosets that comprise the elements of this quotient group to form a quotient ring in a natural way. An answer is provided to this question: if the product of elements of A with elements of R produce elements of A, then the cosets of A form a ring with respect to the natural operations of coset addition and multiplication on R/A.

Abstract Algebra: Definition of Subrings and Examples of Ideals in Ring Theory

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Fundamental Theorem of Ring Homomorphisms: Identifying the homomorphic images of a ring

Fundamental Theorem of Ring Homomorphisms: Identifying the homomorphic images of a ring

Quotient Rings Part 1

Quotient Rings Part 1

Abstract Algebra | The motivation for the definition of an ideal.

Abstract Algebra | The motivation for the definition of an ideal.

Mastering Quotient Rings | Full Lecture with Examples & exams problems solved |

Mastering Quotient Rings | Full Lecture with Examples & exams problems solved |

Abstract Algebra | 18. Ideals - Definition and Examples

Abstract Algebra | 18. Ideals - Definition and Examples

Abstract Algebra Exam 3 Review Problems and Solutions (Basic Ring Theory and Field Theory)

Abstract Algebra Exam 3 Review Problems and Solutions (Basic Ring Theory and Field Theory)

All About Subgroups | Abstract Algebra

All About Subgroups | Abstract Algebra

Abstract Algebra | The characteristic of a ring.

Abstract Algebra | The characteristic of a ring.

Abstract Algebra | More examples involving rings: ideals and isomorphisms.

Abstract Algebra | More examples involving rings: ideals and isomorphisms.

Ideals in Ring Theory (Abstract Algebra)

Ideals in Ring Theory (Abstract Algebra)

Normal Subgroups and Quotient Groups (aka Factor Groups) - Abstract Algebra

Normal Subgroups and Quotient Groups (aka Factor Groups) - Abstract Algebra

Abstract Algebra 13.3:  Ideals and Factor Rings

Abstract Algebra 13.3: Ideals and Factor Rings

Subrings and Ideals

Subrings and Ideals

Integral Domains  (Abstract Algebra)

Integral Domains (Abstract Algebra)

Ring Theory 9 Examples of Ideals and Factor Rings

Ring Theory 9 Examples of Ideals and Factor Rings

(Abstract Algebra 1) Units Modulo n

(Abstract Algebra 1) Units Modulo n

Euclidean Domains Part 1

Euclidean Domains Part 1

Абстрактная алгебра 14.5: Введение в кольца многочленов

Абстрактная алгебра 14.5: Введение в кольца многочленов

Что такое СПИН? спин 1/2 и 3/2

Что такое СПИН? спин 1/2 и 3/2

Самая Сложная Задача В Истории Самой Сложной Олимпиады

Самая Сложная Задача В Истории Самой Сложной Олимпиады

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com