Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Problem A.24- Eigenvector Invariance in Simultaneously Diagonalizable Matrices: Intro to QM Appendix

Автор: Curious About Science

Загружено: 2025-01-31

Просмотров: 49

Описание:

⍟ 𝐀𝐛𝐨𝐮𝐭 𝐓𝐡𝐢𝐬 𝐕𝐢𝐝𝐞𝐨 ⍟
𝙎𝙞𝙢𝙪𝙡𝙩𝙖𝙣𝙚𝙤𝙪𝙨𝙡𝙮 𝘿𝙞𝙖𝙜𝙤𝙣𝙖𝙡𝙞𝙯𝙖𝙗𝙡𝙚 𝙈𝙖𝙩𝙧𝙞𝙘𝙚𝙨:
Matrices A and B are said to be 𝐬𝐢𝐦𝐮𝐥𝐭𝐚𝐧𝐞𝐨𝐮𝐬𝐥𝐲 𝐝𝐢𝐚𝐠𝐨𝐧𝐚𝐥𝐢𝐳𝐚𝐛𝐥𝐞 if there exists an invertible matrix P such that both P^−1AP and P^−1BP are diagonal matrices. This implies that:
• There must exist a common basis of eigenvectors for both matrices A and B.
• The matrices must commute, i.e., AB=BA.
𝘿𝙚𝙜𝙚𝙣𝙚𝙧𝙖𝙩𝙚 𝙀𝙞𝙜𝙚𝙣𝙫𝙖𝙡𝙪𝙚𝙨:
An eigenvalue is 𝐝𝐞𝐠𝐞𝐧𝐞𝐫𝐚𝐭𝐞 if it has more than one linearly independent eigenvector associated with it. This means:
• For an eigenvalue λ, there are multiple eigenvectors, and the dimension of the eigenspace (the geometric multiplicity) can be greater than one.
𝙄𝙢𝙥𝙡𝙞𝙘𝙖𝙩𝙞𝙤𝙣𝙨 𝙛𝙤𝙧 𝙎𝙞𝙢𝙪𝙡𝙩𝙖𝙣𝙚𝙤𝙪𝙨 𝘿𝙞𝙖𝙜𝙤𝙣𝙖𝙡𝙞𝙯𝙖𝙩𝙞𝙤𝙣 𝙬𝙞𝙩𝙝 𝘿𝙚𝙜𝙚𝙣𝙚𝙧𝙖𝙩𝙚 𝙀𝙞𝙜𝙚𝙣𝙫𝙖𝙡𝙪𝙚𝙨:
• 𝐂𝐨𝐦𝐩𝐥𝐞𝐱𝐢𝐭𝐲: Degeneracy adds complexity because it requires ensuring that the different eigenvectors corresponding to the same eigenvalue are consistent across both matrices.

• 𝙿𝚛𝚘𝚋𝚕𝚎𝚖 𝙱𝚛𝚎𝚊𝚔𝚍𝚘𝚠𝚗 𝚃𝚒𝚖𝚎 𝚂𝚝𝚊𝚖𝚙𝚜:
00:00 - Intro & Background.
00:11 - Problem Statement.
02:38 - Proof.
07:50 - Concluding Remarks.
----------------------------------------------------
⍟ 𝐒𝐮𝐩𝐩𝐨𝐫𝐭 𝐓𝐡𝐢𝐬 𝐂𝐡𝐚𝐧𝐧𝐞𝐥 ⍟
• ▶️ 𝘚𝘶𝘣𝘴𝘤𝘳𝘪𝘣𝘦 ▶️ ➜ http://tinyurl.com/4kd8wahb
• 🔎 𝘗𝘢𝘵𝘳𝘦𝘰𝘯 🔍 ➜   / curiousaboutscience  
• ☕ Buy Me a Coffee ☕ ➜ https://buymeacoffee.com/curiousabout...
----------------------------------------------------
⍟ 𝐂𝐫𝐞𝐝𝐢𝐭𝐬/𝐑𝐞𝐬𝐨𝐮𝐫𝐜𝐞𝐬 ⍟
☞📚📖📓= Griffiths, David J., and Darrell F. Schroeter. “Appendix: Linear Algebra.” 𝘐𝘯𝘵𝘳𝘰𝘥𝘶𝘤𝘵𝘪𝘰𝘯 𝘵𝘰 𝘘𝘶𝘢𝘯𝘵𝘶𝘮 𝘔𝘦𝘤𝘩𝘢𝘯𝘪𝘤𝘴, 3rd ed., Cambridge University Press, 2018, pp. 464–485.

•
----------------------------------------------------
⍟ 𝐌𝐢𝐬𝐬𝐢𝐨𝐧 ⍟
Science is a phenomenal exploration of nature. We hope to hone our skills of problem solving by exposing ourselves to multiple contexts. In doing so, it can sometimes be challenging to see the connection between topics. I yearn to understand 𝙝𝙤𝙬 these aspects of physics, unite together. To accomplish this, I'll cover all of my old textbooks through QFT; the convergence point of the many modern scientists! These posts are very much in a "𝘯𝘰𝘵𝘦𝘴 𝘵𝘰 𝘴𝘦𝘭𝘧" style. 𝙈𝙮 𝙝𝙤𝙥𝙚 is that by sharing this exploration, I can help others navigate the beautiful world of mathematics & physics through problems and examples, connecting the mathematical tools to their physical ramifications.

#Curiousaboutscience

• Stay Curious & Happy Learning!

⇢ Share knowledge - tag a friend!
⇢ Subscribe for more!
⇢ Don't forget to turn on video notifications!
----------------------------------------------------

Problem A.24- Eigenvector Invariance in Simultaneously Diagonalizable Matrices: Intro to QM Appendix

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Problem A.25 - Matrix Harmony ⇢ Two Matrices, One Set of Eigenvectors: Intro to QM Appendix

Problem A.25 - Matrix Harmony ⇢ Two Matrices, One Set of Eigenvectors: Intro to QM Appendix

Перекрестные произведения | Глава 10. Сущность линейной алгебры

Перекрестные произведения | Глава 10. Сущность линейной алгебры

Problem A.26 - Simultaneous Diagonalization with Degenerate Eigenvalues: Intro to QM Appendix

Problem A.26 - Simultaneous Diagonalization with Degenerate Eigenvalues: Intro to QM Appendix

Linear Algebra - Appendix from Introduction to Quantum Mechanics by Griffiths and Schroeter

Linear Algebra - Appendix from Introduction to Quantum Mechanics by Griffiths and Schroeter

Simultaneously Diagonalizable Matrices Commute and a Partial Converse

Simultaneously Diagonalizable Matrices Commute and a Partial Converse

Diagonalization

Diagonalization

Преобразование Фурье: лучшее объяснение (для начинающих)

Преобразование Фурье: лучшее объяснение (для начинающих)

Problem A.21 - Eigenvalue Symphony ⇢ Orchestrating Traces and Determinants: Intro to QM Appendix

Problem A.21 - Eigenvalue Symphony ⇢ Orchestrating Traces and Determinants: Intro to QM Appendix

The Mathematician's Weapon | An Intro to Category Theory, Abstraction and Algebra

The Mathematician's Weapon | An Intro to Category Theory, Abstraction and Algebra

Суть линейной алгебры: #7. Обратные матрицы, пространство столбцов и нуль-пространство

Суть линейной алгебры: #7. Обратные матрицы, пространство столбцов и нуль-пространство

Скалярное произведение и двойственность | Глава 9. Сущность линейной алгебры

Скалярное произведение и двойственность | Глава 9. Сущность линейной алгебры

Problem A.28 - Similarity Invariants ⇢ Hidden Beauty of Matrix Diagonalization: Intro to QM Appendix

Problem A.28 - Similarity Invariants ⇢ Hidden Beauty of Matrix Diagonalization: Intro to QM Appendix

Visualizing Diagonalization

Visualizing Diagonalization

Linear Algebra: Lecture 26/33 - Diagonalizable Matrices

Linear Algebra: Lecture 26/33 - Diagonalizable Matrices

Суть линейной алгебры: #6. Определитель

Суть линейной алгебры: #6. Определитель

Visualizing Diagonalization & Eigenbases

Visualizing Diagonalization & Eigenbases

СВОЙСТВО, которое ВАЖНО знать для ЕГЭ 2026!

СВОЙСТВО, которое ВАЖНО знать для ЕГЭ 2026!

Problem A.1 - Mastering Vector Spaces ⇢ A Step-by-Step Guide to the Axioms: Intro to QM Appendix

Problem A.1 - Mastering Vector Spaces ⇢ A Step-by-Step Guide to the Axioms: Intro to QM Appendix

Предел развития НЕЙРОСЕТЕЙ

Предел развития НЕЙРОСЕТЕЙ

Суть линейной алгебры: #8. Неквадратные матрицы

Суть линейной алгебры: #8. Неквадратные матрицы

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]