Marketing Mix Optimization using Reinforcement Learning | Q-Learning & UCB | Python + FastAPI + n8n
Автор: MOHEESH ARUM
Загружено: 2025-12-08
Просмотров: 8
Marketing Mix Optimization using Reinforcement Learning - A complete end-to-end system that learns optimal marketing budget allocation across channels using Q-Learning and UCB Bandit algorithms.
This project demonstrates:
Marketing Mix Model (MMM) with adstock and saturation effects
Q-Learning (Value-Based RL) for state-action optimization
UCB Contextual Bandit for exploration-exploitation balance
FastAPI REST endpoints for production deployment
n8n Agentic Workflow with natural language interface
Key Results:
MMM R² Score: 0.963
UCB outperforms Q-Learning by 6.5%
Both algorithms converge to ROI-Proportional allocation strategy
Tech Stack: Python, NumPy, Pandas, Scikit-learn, FastAPI, n8n, Google Gemini
Dataset: DT MART Market Mix Modeling (Kaggle)
GitHub Repository: [Add your link]
Timestamps:
0:00 Introduction
1:00 System Architecture
2:00 Training Demo
3:30 API Demo
4:30 n8n Agentic Demo
5:30 Results & Conclusion
#ReinforcementLearning #MachineLearning #MarketingAnalytics #Python #QLearning #UCB #FastAPI #n8n #AgenticAI #DataScience #MarketingMixModel #MMM #AI #DeepLearning #BudgetOptimization #MarTech #artificialintelligence
reinforcement learning, machine learning, marketing mix model, q-learning, ucb bandit, python project, fastapi, n8n workflow, agentic ai, marketing optimization, budget allocation, data science, artificial intelligence, mmm, marketing analytics, contextual bandit, exploration exploitation, martech, ai marketing, python tutorial
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: