Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

ETH Zürich AISE: Symbolic Regression and Model Discovery

Автор: CAMLab, ETH Zürich

Загружено: 2024-07-24

Просмотров: 2706

Описание:

↓↓↓ LECTURE OVERVIEW BELOW ↓↓↓
ETH Zürich AI in the Sciences and Engineering 2024

Course Website (links to slides and tutorials): https://www.camlab.ethz.ch/teaching/a...

Lecturers: Dr. Ben Moseley and Prof. Siddhartha Mishra

▬ Lecture Content ▬▬▬
0:00 - Introduction
1:41 - Can AI discover the laws of physics?
5:52 - Model discovery
7:00 - Function discovery
8:58 - Challenge: guess the function
12:44 - Symbolic regression (SR) vs function fitting
14:28 - Challenges of SR
19:11 - Mathematical expressions as trees
21:27 - The search space
22:53 - Pruning
25:07 - Requirements for solving SR
26:11 - Recap: so far
31:43 - AI Feynman
44:10 - Full workflow
49:09 - Better search algorithms
50:40 - Genetic algorithms
58:16 - Example: PySR library
1:00:33 - Other search algorithms
1:02:40 - Model discovery
1:03:48 - Sparse identification of nonlinear dynamics
1:08:41 - Summary
1:09:18 - Course summary
1:11:24 - Impactful research directions in SciML

▬ Course Overview ▬▬▬
Lecture 1: Course Introduction    • ETH Zürich AISE: Course Introduction  
Lecture 2: Introduction to Deep Learning Part 1    • ETH Zürich AISE: Introduction to Deep Lear...  
Lecture 3: Introduction to Deep Learning Part 2    • ETH Zürich AISE: Introduction to Deep Lear...  
Lecture 4: Importance of PDEs in Science    • ETH Zürich AISE: Importance of PDEs in Sci...  
Lecture 5: Physics-Informed Neural Networks – Introduction    • ETH Zürich AISE: Physics-Informed Neural N...  
Lecture 6: Physics-Informed Neural Networks – Limitations and Extensions Part 1    • ETH Zürich AISE: Physics-Informed Neural N...  
Lecture 7: Physics-Informed Neural Networks – Limitations and Extensions Part 2    • ETH Zürich AISE: Physics-Informed Neural N...  
Lecture 8: Physics-Informed Neural Networks – Theory Part 1    • ETH Zürich AISE: Physics-Informed Neural N...  
Lecture 9: Physics-Informed Neural Networks – Theory Part 2    • ETH Zürich AISE: Physics-Informed Neural N...  
Lecture 10: Introduction to Operator Learning Part 1    • ETH Zürich AISE: Introduction to Operator ...  
Lecture 11: Introduction to Operator Learning Part 2    • ETH Zürich AISE: Introduction to Operator ...  
Lecture 12: Fourier Neural Operators    • ETH Zürich AISE: Fourier Neural Operators  
Lecture 13: Spectral Neural Operators and Deep Operator Networks    • ETH Zürich AISE: Spectral Neural Operators...  
Lecture 14: Convolutional Neural Operators    • ETH Zürich AISE: Convolutional Neural Oper...  
Lecture 15: Time-Dependent Neural Operators    • ETH Zürich AISE: Time-Dependent Neural Ope...  
Lecture 16: Large-Scale Neural Operators    • ETH Zürich AISE: Large-Scale Neural Operators  
Lecture 17: Attention as a Neural Operator    • ETH Zürich AISE: Attention as a Neural Ope...  
Lecture 18: Windowed Attention and Scaling Laws    • ETH Zürich AISE: Windowed Attention and Sc...  
Lecture 19: Introduction to Hybrid Workflows Part 1    • ETH Zürich AISE: Introduction to Hybrid Wo...  
Lecture 20: Introduction to Hybrid Workflows Part 2    • ETH Zürich AISE: Introduction to Hybrid Wo...  
Lecture 21: Neural Differential Equations    • ETH Zürich AISE: Neural Differential Equat...  
Lecture 22: Introduction to Diffusion Models    • ETH Zürich AISE: Introduction to Diffusion...  
Lecture 23: Introduction to JAX    • ETH Zürich AISE: Introduction to JAX  
Lecture 24: Symbolic Regression and Model Discovery    • ETH Zürich AISE: Symbolic Regression and M...  
Lecture 25: Applications of AI in Chemistry and Biology Part 1    • ETH Zürich AISE: Applications of AI in Che...  
Lecture 26: Applications of AI in Chemistry and Biology Part 2    • ETH Zürich AISE: Applications of AI in Che...  

▬ Course Description ▬▬▬
AI is having a profound impact on science by accelerating discoveries across physics, chemistry, biology, and engineering. This course presents a highly topical selection of AI applications across these fields. Emphasis is placed on using AI, particularly deep learning, to understand systems modelled by PDEs, and key scientific machine learning concepts and themes are discussed.

▬ Course Learning Objectives ▬▬▬
Aware of advanced applications of AI in the sciences and engineering
Familiar with the design, implementation, and theory of these algorithms
Understand the pros/cons of using AI and deep learning for science
Understand key scientific machine learning concepts and themes

ETH Zürich AISE: Symbolic Regression and Model Discovery

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

ETH Zürich AISE: Applications of AI in Chemistry and Biology Part 1

ETH Zürich AISE: Applications of AI in Chemistry and Biology Part 1

Symbolic Regression for Model Discovery in Python and Julia

Symbolic Regression for Model Discovery in Python and Julia

ETH Zürich AISE: Introduction to Deep Learning Part 2

ETH Zürich AISE: Introduction to Deep Learning Part 2

Predicting the rules behind - Deep Symbolic Regression for Recurrent Sequences (w/ author interview)

Predicting the rules behind - Deep Symbolic Regression for Recurrent Sequences (w/ author interview)

ETH Zürich AISE: Introduction to Deep Learning Part 1

ETH Zürich AISE: Introduction to Deep Learning Part 1

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Circular AI Deals Fuel Bubble Debate | Bloomberg Tech: Asia 11/28/25

Circular AI Deals Fuel Bubble Debate | Bloomberg Tech: Asia 11/28/25

Python Symbolic Regression (PySR) [Physics Informed Machine Learning]

Python Symbolic Regression (PySR) [Physics Informed Machine Learning]

Почему творог - идеальный продукт: суперфуд для мозга и роста мышц

Почему творог - идеальный продукт: суперфуд для мозга и роста мышц

Miles Cranmer - The Next Great Scientific Theory is Hiding Inside a Neural Network (April 3, 2024)

Miles Cranmer - The Next Great Scientific Theory is Hiding Inside a Neural Network (April 3, 2024)

Computer Architecture - Lecture 29: Systolic Array Architectures (Fall 2024)

Computer Architecture - Lecture 29: Systolic Array Architectures (Fall 2024)

ETH Zürich AISE: Physics-Informed Neural Networks – Introduction

ETH Zürich AISE: Physics-Informed Neural Networks – Introduction

Workshop 2: An Introduction to Symbolic Regression with PySR and SymbolicRegression.jl

Workshop 2: An Introduction to Symbolic Regression with PySR and SymbolicRegression.jl

DDPS | ‘Physics Informed Machine Learning through Symbolic Regression’

DDPS | ‘Physics Informed Machine Learning through Symbolic Regression’

Why you don't really exist | Sam Harris, Roger Penrose, Sophie Scott

Why you don't really exist | Sam Harris, Roger Penrose, Sophie Scott

ETH Zürich AISE: Introduction to JAX

ETH Zürich AISE: Introduction to JAX

ETH Zürich AISE: Course Introduction

ETH Zürich AISE: Course Introduction

Interpretable Machine Learning with SymbolicRegression.jl | Miles Cranmer | JuliaCon 2023

Interpretable Machine Learning with SymbolicRegression.jl | Miles Cranmer | JuliaCon 2023

ETH Zürich AISE: Physics-Informed Neural Networks – Limitations and Extensions Part 2

ETH Zürich AISE: Physics-Informed Neural Networks – Limitations and Extensions Part 2

MLFlow Tutorial | ML Ops Tutorial

MLFlow Tutorial | ML Ops Tutorial

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]