DAA 03 – Matrix Multiplication Algorithms | Divide and Conquer & Strassen | CS F364
Автор: Abhishek Mishra – Mathematics & TCS
Загружено: 2026-01-09
Просмотров: 113
This lecture discusses matrix multiplication algorithms as part of the Design and Analysis of Algorithms (DAA) course (CS F364). We begin with the iterative (naïve) matrix multiplication algorithm, formally defining matrix multiplication and analyzing its Θ(n³) time complexity.
The lecture then introduces a divide and conquer approach to matrix multiplication, where matrices are recursively partitioned into submatrices. The recursive formulation is explained in detail, along with a recursion tree–based time complexity analysis.
Finally, we present Strassen’s matrix multiplication algorithm, an advanced divide and conquer technique that reduces the number of recursive subproblems from eight to seven. The lecture derives the recurrence relation for Strassen’s algorithm and solves it to obtain the improved Θ(n^{log₂7}) time complexity.
📌 Topics Covered in This Lecture
Definition of matrix multiplication
Iterative (naïve) matrix multiplication algorithm
Time complexity analysis of iterative matrix multiplication
Divide and conquer matrix multiplication
Recursive formulation and divide-and-conquer graph
Recursion tree analysis for matrix multiplication
Strassen’s matrix multiplication algorithm
Reduction from eight to seven subproblems
Recurrence relation for Strassen’s algorithm
Solving recurrences and final time complexity
🎯 Who Should Watch
Students studying Design and Analysis of Algorithms (DAA)
B.Tech / BE / MCA / M.Sc. (CS) students
Learners preparing for university examinations and GATE Computer Science
Anyone learning divide and conquer algorithms with recurrence analysis
🔗 Playlist
This video is part of the playlist:
Design and Analysis of Algorithms – Complete DAA Course
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: