Distinct Eigenvalues Have Linearly Independent Eigenvectors
Автор: Mike, the Mathematician
Загружено: 2024-07-26
Просмотров: 586
We prove that if a matrix has distinct eigenvalues, then it necessarily has linearly independent eigenvectors. As a corollary of this, we show that there are at most the dimension of underlying space number of eigenvalues. Furthermore, we show that if there are n (dimension of the matrix) number of distinct eigenvalues, then the matrix will be diagonalizable.
#mikethemathematician, #mikedabkowski, #profdabkowski
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: