Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

MIT PhD Defense: Practical Engineering Design Optimization w/ Computational Graph Transformations

Автор: Peter Sharpe

Загружено: 2024-08-15

Просмотров: 1718

Описание:

Peter Sharpe's PhD Thesis Defense.
August 5, 2024
MIT AeroAstro

Committee: John Hansman, Mark Drela, Karen Willcox
Readers: Joaquim Martins, Tony Tao

Title: Accelerating Practical Engineering Design Optimization with Computational Graph Transformations

Abstract: Multidisciplinary design optimization has immense potential to improve conceptual design workflows for large-scale engineered systems, such as aircraft. However, despite remarkable theoretical progress in advanced optimization methods in recent decades, practical industry adoption of such methods lags far behind. This thesis identifies the root causes of this theory-to-practice gap and addresses them by introducing a new paradigm for computational design optimization frameworks called code transformations. Code transformations encompass a variety of computational-graph-based scientific computing strategies (e.g., automatic differentiation, automatic sparsity detection, problem auto-scaling) that automatically analyze, augment, and accelerate the user's code before passing it to a modern gradient-based optimization algorithm.

This paradigm offers a compelling combination of ease-of-use, computational speed, and modeling flexibility, whereas existing paradigms typically make sacrifices in at least one of these key areas. Consequently, code transformations present a competitive avenue for increasing the adoption of advanced optimization techniques in industry, all without placing the burden of deep expertise in applied mathematics and computer science on end users.

The major contributions of this thesis are fivefold. First, it introduces the concept of code transformations as a possible foundation for an MDO framework and demonstrates their practical feasibility through aircraft design case studies. Second, it implements several common aircraft analyses in a form compatible with code transformations, providing a practical illustration of the opportunities, challenges, and considerations here. Third, it presents a novel technique to automatically trace sparsity through certain external black-box functions by exploiting IEEE 754 handling of not-a-number (NaN) values. Fourth, it proposes strategies for efficiently incorporating black-box models into a code transformation framework through physics-informed machine learning surrogates, demonstrated with an airfoil aerodynamics analysis case study. Finally, it shows how a code transformations paradigm can simplify the formulation of other optimization-related aircraft development tasks beyond just design, exemplified by aircraft system identification and performance reconstruction from minimal flight data.

Taken holistically, these contributions aim to improve the accessibility of advanced optimization techniques for industry engineers, making large-scale conceptual multidisciplinary design optimization more practical for real-world systems.

0:00 Introduction
0:38 General Background
4:31 Thesis Overview
10:01 Code Transformations Paradigm - Theory
13:02 Code Transformations Paradigm - Benchmarks
20:43 Traceable Physics Models
29:40 Aircraft Design Case Studies with AeroSandbox
37:59 Handling Black-Box Functions
39:06 Sparsity Detection via NaN Contamination
45:45 NeuralFoil: Physics-Informed ML Surrogates
56:27 Conclusion
59:25 Questions

MIT PhD Defense: Practical Engineering Design Optimization w/ Computational Graph Transformations

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Pros and Cons of Airfoil Optimization

Pros and Cons of Airfoil Optimization

Bayesian shape optimisation in high dimensional design spaces using isogeometric analysis

Bayesian shape optimisation in high dimensional design spaces using isogeometric analysis

RANS vs. viscous panel methods for airfoil shape optimization (ICAS 2022)

RANS vs. viscous panel methods for airfoil shape optimization (ICAS 2022)

ЛЕКЦИЯ ПРО НАДЁЖНЫЕ ШИФРЫ НА КОНФЕРЕНЦИИ БАЗОВЫХ ШКОЛ РАН В ТРОИЦКЕ

ЛЕКЦИЯ ПРО НАДЁЖНЫЕ ШИФРЫ НА КОНФЕРЕНЦИИ БАЗОВЫХ ШКОЛ РАН В ТРОИЦКЕ

Air Racing: Trajectory Optimization

Air Racing: Trajectory Optimization

Conversation with Elon Musk | World Economic Forum Annual Meeting 2026

Conversation with Elon Musk | World Economic Forum Annual Meeting 2026

How to Design Your Own Aircraft

How to Design Your Own Aircraft

Stanford AA222/CS361 Engineering Design Optimization I Probabilistic Surrogate Optimization

Stanford AA222/CS361 Engineering Design Optimization I Probabilistic Surrogate Optimization

AI, Machine Learning, Deep Learning and Generative AI Explained

AI, Machine Learning, Deep Learning and Generative AI Explained

Lecture 1 – Course Introduction (MIT How to AI Almost Anything, Spring 2025)

Lecture 1 – Course Introduction (MIT How to AI Almost Anything, Spring 2025)

Aerostructural wing design optimization considering full mission analysis

Aerostructural wing design optimization considering full mission analysis

Трамп идет на Гренландию: встречайте мир без правил! | США, Европа, Россия, Китай, Арктика

Трамп идет на Гренландию: встречайте мир без правил! | США, Европа, Россия, Китай, Арктика

Музыка для работы - Deep Focus Mix для программирования, кодирования

Музыка для работы - Deep Focus Mix для программирования, кодирования

PhD Thesis Defense - Yen-Chen Lin - Neural Fields for Robotic Manipulation

PhD Thesis Defense - Yen-Chen Lin - Neural Fields for Robotic Manipulation

Stanford AA222 / CS361 Engineering Design Optimization I Linear Constrained Optimization

Stanford AA222 / CS361 Engineering Design Optimization I Linear Constrained Optimization

PDE-constrained Optimization Using PETSc/TAO ǀ Alp Dener, Argonne National Laboratory

PDE-constrained Optimization Using PETSc/TAO ǀ Alp Dener, Argonne National Laboratory

What If You Keep Slowing Down?

What If You Keep Slowing Down?

Как происходит модернизация остаточных соединений [mHC]

Как происходит модернизация остаточных соединений [mHC]

Distinguished Lecture Series in Energy: Dr. Lorenz T. (Larry) Biegler

Distinguished Lecture Series in Energy: Dr. Lorenz T. (Larry) Biegler

Hassabis on an AI Shift Bigger Than Industrial Age

Hassabis on an AI Shift Bigger Than Industrial Age

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com