Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Are We Misreading the AI Exponential? Julian Schrittwieser on Move 37 & Scaling RL (Anthropic)

Автор: The MAD Podcast with Matt Turck

Загружено: 2025-10-23

Просмотров: 20548

Описание:

Are we failing to understand the exponential, again?
My guest is Julian Schrittwieser (top AI researcher at Anthropic; previously Google DeepMind on AlphaGo Zero & MuZero). We unpack his viral post (“Failing to Understand the Exponential, again”) and what it looks like when task length doubles every 3–4 months—pointing to AI agents that can work a full day autonomously by 2026 and expert-level breadth by 2027. We talk about the original Move 37 moment and whether today’s AI models can spark alien insights in code, math, and science—including Julian’s timeline for when AI could produce Nobel-level breakthroughs.

We go deep on the recipe of the moment—pre-training + RL—why it took time to combine them, what “RL from scratch” gets right and wrong, and how implicit world models show up in LLM agents. Julian explains the current rewards frontier (human prefs, rubrics, RLVR, process rewards), what we know about compute & scaling for RL, and why most builders should start with tools + prompts before considering RL-as-a-service. We also cover evals & Goodhart’s law (e.g., GDP-Val vs real usage), the latest in mechanistic interpretability (think “Golden Gate Claude”), and how safety & alignment actually surface in Anthropic’s launch process.

Finally, we zoom out: what 10× knowledge-work productivity could unlock across medicine, energy, and materials, how jobs adapt (complementarity over 1-for-1 replacement), and why the near term is likely a smooth ramp—fast, but not a discontinuity.

Julian Schrittwieser
Blog - https://www.julian.ac
X/Twitter - https://x.com/mononofu
Viral post: Failing to Understand the Exponential, Again (9/27/2025)

Anthropic
Website - https://www.anthropic.com
X/Twitter - https://x.com/anthropicai

Matt Turck (Managing Director)
Blog - https://www.mattturck.com
LinkedIn -   / turck  
X/Twitter -   / mattturck  

FIRSTMARK
Website - https://firstmark.com
X/Twitter -   / firstmarkcap  

LISTEN ON:
Spotify - https://open.spotify.com/show/7yLATDS...
Apple Podcasts - https://podcasts.apple.com/us/podcast...

00:00 Cold open — “We’re not seeing any slowdown.”
00:32 Intro — who Julian is & what we cover
01:09 The “exponential” from inside frontier labs
04:46 2026–2027: agents that work a full day; expert-level breadth
08:58 Benchmarks vs reality: long-horizon work, GDP-Val, user value
10:26 Move 37 — what actually happened and why it mattered
13:55 Novel science: AlphaCode/AlphaTensor → when does AI earn a Nobel?
16:25 Discontinuity vs smooth progress (and warning signs)
19:08 Does pre-training + RL get us there? (AGI debates aside)
20:55 Sutton’s “RL from scratch”? Julian’s take
23:03 Julian’s path: Google → DeepMind → Anthropic
26:45 AlphaGo (learn + search) in plain English
30:16 AlphaGo Zero (no human data)
31:00 AlphaZero (one algorithm: Go, chess, shogi)
31:46 MuZero (planning with a learned world model)
33:23 Lessons for today’s agents: search + learning at scale
34:57 Do LLMs already have implicit world models?
39:02 Why RL on LLMs took time (stability, feedback loops)
41:43 Compute & scaling for RL — what we see so far
42:35 Rewards frontier: human prefs, rubrics, RLVR, process rewards
44:36 RL training data & the “flywheel” (and why quality matters)
48:02 RL & Agents 101 — why RL unlocks robustness
50:51 Should builders use RL-as-a-service? Or just tools + prompts?
52:18 What’s missing for dependable agents (capability vs engineering)
53:51 Evals & Goodhart — internal vs external benchmarks
57:35 Mechanistic interpretability & “Golden Gate Claude”
1:00:03 Safety & alignment at Anthropic — how it shows up in practice
1:03:48 Jobs: human–AI complementarity (comparative advantage)
1:06:33 Inequality, policy, and the case for 10× productivity → abundance
1:09:24 Closing thoughts

Are We Misreading the AI Exponential? Julian Schrittwieser on Move 37 & Scaling RL (Anthropic)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Open Source AI Strikes Back — Inside Ai2’s OLMo 3 ‘Thinking

Open Source AI Strikes Back — Inside Ai2’s OLMo 3 ‘Thinking"

What’s Next for AI? OpenAI’s Łukasz Kaiser (Transformer Co-Author)

What’s Next for AI? OpenAI’s Łukasz Kaiser (Transformer Co-Author)

A Complete Beginner-to-Pro Workflow in Computational Biology(Day three )

A Complete Beginner-to-Pro Workflow in Computational Biology(Day three )

We're not racing to AGI because of a coordination problem | Holden Karnofsky (Anthropic)

We're not racing to AGI because of a coordination problem | Holden Karnofsky (Anthropic)

America Announces Its Official AI Plan

America Announces Its Official AI Plan "The Genesis Mission"

Richard Sutton – Father of RL thinks LLMs are a dead end

Richard Sutton – Father of RL thinks LLMs are a dead end

Закат программистов? Нет, эра архитекторов AI. // Сергей Марков

Закат программистов? Нет, эра архитекторов AI. // Сергей Марков

Interpretability: Understanding how AI models think

Interpretability: Understanding how AI models think

AI Fund’s GP, Andrew Ng: LLMs as the Next Geopolitical Weapon & Do Margins Still Matter in AI?

AI Fund’s GP, Andrew Ng: LLMs as the Next Geopolitical Weapon & Do Margins Still Matter in AI?

«Open AI — это пузырь»! Откровения из Кремниевой долины | Братья Либерманы

«Open AI — это пузырь»! Откровения из Кремниевой долины | Братья Либерманы

The Godmother of AI on jobs, robots & why world models are next | Dr. Fei-Fei Li

The Godmother of AI on jobs, robots & why world models are next | Dr. Fei-Fei Li

How GPT-5 Thinks — OpenAI VP of Research Jerry Tworek

How GPT-5 Thinks — OpenAI VP of Research Jerry Tworek

'Musk Will Get Richer, People Will Get Unemployed': Nobel Laureate Hinton on AI

'Musk Will Get Richer, People Will Get Unemployed': Nobel Laureate Hinton on AI

Demis Hassabis & Josh Woodward Tell Us Why Gemini 3.0 Puts Google in Front of the A.I. Race

Demis Hassabis & Josh Woodward Tell Us Why Gemini 3.0 Puts Google in Front of the A.I. Race

Фейки в «Войне и мире», любовницы Пушкина, тайны детских сказок / вДудь

Фейки в «Войне и мире», любовницы Пушкина, тайны детских сказок / вДудь

The Real Reason Huge AI Models Actually Work [Prof. Andrew Wilson]

The Real Reason Huge AI Models Actually Work [Prof. Andrew Wilson]

AI isn’t digital transformation, and leaders need to understand why

AI isn’t digital transformation, and leaders need to understand why

How AI Is Accelerating Scientific Discovery Today and What's Ahead — the OpenAI Podcast Ep. 10

How AI Is Accelerating Scientific Discovery Today and What's Ahead — the OpenAI Podcast Ep. 10

Sonnet 4.5 & the AI Plateau Myth — Sholto Douglas (Anthropic)

Sonnet 4.5 & the AI Plateau Myth — Sholto Douglas (Anthropic)

David Deutsch: AGI, the origins of quantum computing, and the future of humanity

David Deutsch: AGI, the origins of quantum computing, and the future of humanity

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]