Скачать
Why Agentic AI Fails and How MCP Fixes It for Developers
Автор: Udacity
Загружено: 2025-08-05
Просмотров: 322
Описание:
Agentic AI systems can be challenging for developers to manage, especially when it comes to debugging and updating code. Without a centralized logging system or clear architecture, small changes often require digging through multiple agents and dependencies.
In this clip, Ramkumar Manoharan, co-founder of an AI startup building intelligent agent-based systems, explains how Modular Component Protocol (MCP) offers a more structured alternative. By following a sequential flow and modular architecture, MCP allows developers to identify issues, update APIs, and prototype ideas more easily, without impacting the entire system.

Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: