Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

MIT EI Seminar - Max Welling - Learning equivariant and hybrid message passing on graphs

Автор: MIT Embodied Intelligence

Загружено: 2020-05-12

Просмотров: 7077

Описание:

MIT Embodied Intelligence Seminar - May 8, 2020

Speaker: Max Welling - University of Amsterdam and Qualcomm
Title: Learning Equivariant and Hybrid Message Passing on Graphs.

Abstract:
In this talk I will extend graph neural nets in two directions. First, we will ask if we can formulate a GNN on meshes of two dimensional manifolds. Previous approaches mostly used standard GNNs which are invariant to permutations of the input nodes. However, we show this is unnecessarily restrictive. Instead, we define mesh-CNNs which are equivariant and allow more general kernels. Second we will study how to incorporate information about the data generating process into GNNs. Belief propagation is a form of GNN with no learnable parameters that performs inference in a generative graphical model. We subsequently augment BP by a trainable GNN to correct the mistakes of BP, in order to improve predictive performance. Experiments show the increased power of both methods.

Bio: Prof. Dr. Max Welling is a research chair in Machine Learning at the University of Amsterdam and a VP Technologies at Qualcomm. He has a secondary appointment as a senior fellow at the Canadian Institute for Advanced Research (CIFAR). He is co-founder of “Scyfer BV” a university spin-off in deep learning which got acquired by Qualcomm in summer 2017. In the past he held postdoctoral positions at Caltech (’98-’00), UCL (’00-’01) and the U. Toronto (’01-’03). He received his PhD in ’98 under supervision of Nobel laureate Prof. G. ‘t Hooft. Max Welling has served as associate editor in chief of IEEE TPAMI from 2011-2015 (impact factor 4.8). He serves on the board of the NIPS foundation since 2015 (the largest conference in machine learning) and has been program chair and general chair of NIPS in 2013 and 2014 respectively. He was also program chair of AISTATS in 2009 and ECCV in 2016 and general chair of MIDL 2018. He has served on the editorial boards of JMLR and JML and was an associate editor for Neurocomputing, JCGS and TPAMI. He received multiple grants from Google, Facebook, Yahoo, NSF, NIH, NWO and ONR-MURI among which an NSF career grant in 2005. He is recipient of the ECCV Koenderink Prize in 2010. Welling is in the board of the Data Science Research Center in Amsterdam, he directs the Amsterdam Machine Learning Lab (AMLAB), and co-directs the Qualcomm-UvA deep learning lab (QUVA) and the Bosch-UvA Deep Learning lab (DELTA). Max Welling has over 250 scientific publications in machine learning, computer vision, statistics and physics and an h-index of 62.

MIT EI Seminar - Max Welling - Learning equivariant and hybrid message passing on graphs

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

MIT EI Seminar - Lerrel Pinto - Diverse data and efficient algorithms for robot learning

MIT EI Seminar - Lerrel Pinto - Diverse data and efficient algorithms for robot learning

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

The Thinking Game | Full documentary | Tribeca Film Festival official selection

The Thinking Game | Full documentary | Tribeca Film Festival official selection

#036 - Max Welling: Quantum, Manifolds & Symmetries in ML

#036 - Max Welling: Quantum, Manifolds & Symmetries in ML

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

Момент, когда мы перестали понимать ИИ [AlexNet]

Момент, когда мы перестали понимать ИИ [AlexNet]

EI Seminar - Jason Ma - Recent Progress on Foundation Model Supervision for Robot Learning

EI Seminar - Jason Ma - Recent Progress on Foundation Model Supervision for Robot Learning

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Theoretical Foundations of Graph Neural Networks

Theoretical Foundations of Graph Neural Networks

ICLR 2021 Keynote -

ICLR 2021 Keynote - "Geometric Deep Learning: The Erlangen Programme of ML" - M Bronstein

EI Seminar - Danny Driess  - Have Large Models Changed Robotics?

EI Seminar - Danny Driess - Have Large Models Changed Robotics?

MIT 6.S191: Convolutional Neural Networks

MIT 6.S191: Convolutional Neural Networks

Akarsh Kumar - Automating the Search for Artificial Life with Foundation Models

Akarsh Kumar - Automating the Search for Artificial Life with Foundation Models

Graph Nets: The Next Generation - Max Welling

Graph Nets: The Next Generation - Max Welling

MIT Introduction to Deep Learning | 6.S191

MIT Introduction to Deep Learning | 6.S191

Equivariant Neural Networks | Part 1/3 - Introduction

Equivariant Neural Networks | Part 1/3 - Introduction

Complete Statistical Theory of Learning (Vladimir Vapnik) | MIT Deep Learning Series

Complete Statistical Theory of Learning (Vladimir Vapnik) | MIT Deep Learning Series

Michael Bronstein - Geometric deep learning on graphs: going beyond Euclidean data

Michael Bronstein - Geometric deep learning on graphs: going beyond Euclidean data

Felix Yanwei Wang - Inference-Time Policy Customization Through Interactive Task Specification

Felix Yanwei Wang - Inference-Time Policy Customization Through Interactive Task Specification

Max Welling - Make VAEs Great Again: Unifying VAEs and Flows

Max Welling - Make VAEs Great Again: Unifying VAEs and Flows

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]