Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

This Is Why I Love JEE Advanced! It Can Surprize Anyone With An Easy But Unexpected Question

Автор:

Загружено: 2025-10-31

Просмотров: 13651

Описание:

In this Physics video in Hindi for the chapter "System of Particles and Rotational Motion" of Class 11, we discussed a Previous Years’ Question of IIT-JEE Advanced.

The question states:
Consider regular polygons with number of sides n = 3, 4, 5, ... as shown in the figure. The centre of mass of all the polygons is at height h from the ground. They roll on a horizontal surface about the leading vertex without slipping and sliding as depicted. The maximum increase in height of the locus of the center of mass for each polygon is Δ. Then Δ depends on n and h as
(a) Δ = h sin²(π/n),
(b) Δ = h tan²(π/2n),
(c) Δ = h(1/cos(π/n) − 1),
(d) Δ = h sin(2π/n).
[IIT-JEE Advanced 2017]

This question beautifully combines rotational motion, geometry, and the motion of the center of mass. When a polygon rolls on a surface about one of its vertices, the center of mass rises and falls periodically as each vertex becomes the new point of contact. The problem asks us to find the maximum rise in height (Δ) of the center of mass as the polygon transitions from one vertex to the next.

To solve this question, we analyze the geometry of the polygon and how the center of mass moves relative to the point of contact. When a regular polygon rolls about a vertex without slipping, the center of mass traces an arc around that vertex. The height difference between the lowest and highest positions of the center of mass depends on the angle subtended at the center of the polygon and the height h. By relating the geometry of the situation with the number of sides n, we find that Δ depends on both h and n in a trigonometric manner.

One of the key physical quantities involved in this question is the Centre of Mass. The centre of mass of a body is the point where the total mass of the system can be considered to be concentrated for the purpose of analyzing translational motion. In the case of the rolling polygon, the motion of this point determines how the body as a whole rises and falls during rotation.

Another important concept here is Rolling Without Slipping. Rolling without slipping means that the body rotates in such a way that the point of contact with the surface has zero relative velocity with respect to the surface. This condition ensures that there is a pure rolling motion, allowing the geometric relationships between rotation and translation to hold accurately.

This question is an excellent example from the chapter "System of Particles and Rotational Motion" because it integrates rotational dynamics, energy concepts, and geometric reasoning. It challenges students to visualize the motion of the center of mass during rolling and to express its height change using trigonometric relationships. Such problems are crucial for mastering IIT-JEE Advanced level conceptual understanding.

Through this video, we explored the geometrical logic, physical principles, and systematic approach required to solve this unique IIT-JEE Advanced question. Students will gain a deep conceptual grasp of rotational motion and geometric transformations involved in rolling motion — topics central to System of Particles and Rotational Motion and essential for IIT-JEE Advanced success.

#jeeadvanced #jeeadvance #iitjee

This Is Why I Love JEE Advanced! It Can Surprize Anyone With An Easy But Unexpected Question

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Rotational Motion 11 || Angular Momentum IIT JEE  MAINS / NEET || Angular Momentum of Rotating Body

Rotational Motion 11 || Angular Momentum IIT JEE MAINS / NEET || Angular Momentum of Rotating Body

Политика в Гарри Поттере: что мы упустили?

Политика в Гарри Поттере: что мы упустили?

Irodov's Challenging Gift to Every Physics Lover : Find Time Before Collision | IRODOV 1.138

Irodov's Challenging Gift to Every Physics Lover : Find Time Before Collision | IRODOV 1.138

JEE Advanced Constructed This

JEE Advanced Constructed This "Leaning Ladder" Problem to Test "Common Sense" With Knowledge

Looking This Way Will Clear All Confusions Over

Looking This Way Will Clear All Confusions Over "Why Cyclist Bend"

Case Study Questions with Full Solution | Heron’s Formula Class 9 | Chapter 10 | हेरॉन का सूत्र

Case Study Questions with Full Solution | Heron’s Formula Class 9 | Chapter 10 | हेरॉन का सूत्र

QUADRILATERAL CLASS IX LECTURE 15

QUADRILATERAL CLASS IX LECTURE 15

Dark Secrets of IIT JEE AIR 1 & 2 Exposed 🔥

Dark Secrets of IIT JEE AIR 1 & 2 Exposed 🔥

Румынская математическая олимпиада

Румынская математическая олимпиада

Я попробовал САМЫЙ СЛОЖНЫЙ вопрос экзамена по физике в средней школе

Я попробовал САМЫЙ СЛОЖНЫЙ вопрос экзамена по физике в средней школе

Only One Simple Concept Makes This Advanced Physics Problem Look Easy

Only One Simple Concept Makes This Advanced Physics Problem Look Easy

Lagrangian vs Newtonian Mechanics

Lagrangian vs Newtonian Mechanics

The Basel Problem

The Basel Problem

Ninja Sir Explained JEE Advanced 2016 Question of Rotational Motion!

Ninja Sir Explained JEE Advanced 2016 Question of Rotational Motion!

This Surprising

This Surprising "Dual" Rotation Puzzled All of Us

When JEE Advanced Makes Our Life Easy  |  Falling Mass Rotates Cylinder  |  PYQ 2014

When JEE Advanced Makes Our Life Easy | Falling Mass Rotates Cylinder | PYQ 2014

Остановка внутреннего диалога. Взлом чужеродного устройства.

Остановка внутреннего диалога. Взлом чужеродного устройства.

Frictional Torque : How Quickly It Stops Spinning Disc || Advanced Problem from IRODOV 1.249

Frictional Torque : How Quickly It Stops Spinning Disc || Advanced Problem from IRODOV 1.249

Фотопамять для JEE и NEET за 15 дней!

Фотопамять для JEE и NEET за 15 дней!

JEE Advanced 2016 Rotation Problem - easy to understand Solution #jeeadvanced #rotation #sbt

JEE Advanced 2016 Rotation Problem - easy to understand Solution #jeeadvanced #rotation #sbt

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]