Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

How I Understand Diffusion Models

Diffusion models

AI

Computer vision

Generative models

Score-based generative models

AI content creation

Classifier guidance

Variational autoencoder

Evidence lower bound

ELBO

Denoising

Stable Diffusion

Imagen

DALL-E

Classifier-free guidance

Latent Diffusion Models

Cascade Diffusion Models

SDXL-Turbo

Adversarial Score Distillation

Progressive Distillation

Consistency Models

Latent Consistency Models

LoRA

Автор: Jia-Bin Huang

Загружено: 8 янв. 2024 г.

Просмотров: 49 978 просмотров

Описание:

Diffusion models are powerful generative models that enable many successful applications like image, video, and 3D generation from texts.

In this tutorial, I share my understanding of the diffusion model basics, including training, guidance, resolution, and speed.

Below are some other great resources to learn more about diffusion models.

===== Slides =====
Here are the slides used in this video

Training: https://bit.ly/3WudEPH
Guidance: https://bit.ly/3wedCky
Resolution: https://bit.ly/4bqxHmo
Speed: https://bit.ly/4bpJzoJ

===== Tutorials =====
[CVPR 2022 Tutorial] Denoising Diffusion-based Generative Modeling: Foundations and Applications
https://cvpr2022-tutorial-diffusion-m...
[CVPR 2023 Tutorial] Denoising Diffusion Models: A Generative Learning Big Bang
https://cvpr2023-tutorial-diffusion-m...
[A short course by DeepLearning.AI] How Diffusion Models Work
   • How Diffusion Models Work: A short co...  

===== Training =====
[Sohl-Dickstein et al. 2015] Deep Unsupervised Learning using Nonequilibrium Thermodynamics
https://arxiv.org/abs/1503.03585
[Ho et al. 2020]: Denoising Diffusion Probabilistic Models
https://arxiv.org/abs/2006.11239
[Luo 2022] Understanding Diffusion Models: A Unified Perspective https://arxiv.org/abs/2208.11970
[Karras et al. 2022] Elucidating the design space of diffusion-based generative models
https://arxiv.org/abs/2206.00364
[Karras et al. 2023] Analyzing and Improving the Training Dynamics of Diffusion Models
https://arxiv.org/abs/2312.02696

===== Guidance =====
[Dhariwal and Nichol 2021] Diffusion Models Beat GANs on Image Synthesis
https://arxiv.org/abs/2105.05233
[Ho and Salimans 2022] Classifier-Free Diffusion Guidance
https://arxiv.org/abs/2207.12598
[Sander Dieleman 2022] Guidance: a cheat code for diffusion models
https://sander.ai/2022/05/26/guidance...
[Sander Dieleman 2023] The geometry of diffusion guidance
https://sander.ai/2023/08/28/geometry...

===== Resolution =====
[Ho et al. 2021] Cascaded Diffusion Models for High Fidelity Image Generation
https://arxiv.org/abs/2106.15282
[Saharia et al. 2022] Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding
https://arxiv.org/abs/2205.11487
[Rombach et al. 2021] High-Resolution Image Synthesis with Latent Diffusion Models
https://arxiv.org/abs/2112.10752
[Vahdat et al. 2021] Score-based Generative Modeling in Latent Space
https://proceedings.neurips.cc/paper_...
[Podell et al. 2023] SDXL: Improving Latent Diffusion Models for High-resolution Image Synthesis
https://arxiv.org/abs/2307.01952
[Hoogeboom et al. 2023] Simple diffusion: End-to-end diffusion for high resolution images
https://arxiv.org/abs/2301.11093
[Chen et al. 2023] On the importance of noise scheduling for diffusion models
https://arxiv.org/abs/2301.10972
[Gu et al. 2023] Matryoshka Diffusion Models
https://arxiv.org/abs/2310.15111

===== Speed =====
[Song et al. 2021] Denoising Diffusion Implicit Models
https://arxiv.org/abs/2010.02502
[Salimans and Ho 2022] Progressive Distillation for Fast Sampling of Diffusion Models
https://arxiv.org/abs/2202.00512
[Meng et al. 2023] On Distillation of Guided Diffusion Models
https://arxiv.org/abs/2210.03142
[Song et al. 2023] Consistency models
https://arxiv.org/abs/2303.01469
[Luo et al. 2023] Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference
https://arxiv.org/abs/2310.04378
[Luo et al. 2023] LCM-LoRA: A Universal Stable-Diffusion Acceleration Module
https://arxiv.org/abs/2311.05556
[Sauer et al. 2023] Adversarial Diffusion Distillation
https://arxiv.org/abs/2311.17042
[Yin et al. 2023] One-step Diffusion with Distribution Matching Distillation
https://arxiv.org/abs/2311.18828

How I Understand Diffusion Models

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

How does OpenAI's Sora work?

How does OpenAI's Sora work?

How I Understand Flow Matching

How I Understand Flow Matching

شرح شامل لنماذج الانتشار في الذكاء الاصطناعي التوليدي | Diffusion Models

شرح شامل لنماذج الانتشار في الذكاء الاصطناعي التوليدي | Diffusion Models

The Breakthrough Behind Modern AI Image Generators | Diffusion Models Part 1

The Breakthrough Behind Modern AI Image Generators | Diffusion Models Part 1

Illustrated Guide to Transformers Neural Network: A step by step explanation

Illustrated Guide to Transformers Neural Network: A step by step explanation

State-space model and control (Discrete-time system formula and stability)

State-space model and control (Discrete-time system formula and stability)

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Comment ces IA inventent-elles des images ?

Comment ces IA inventent-elles des images ?

How Rotary Position Embedding Supercharges Modern LLMs

How Rotary Position Embedding Supercharges Modern LLMs

How FlashAttention Accelerates Generative AI Revolution

How FlashAttention Accelerates Generative AI Revolution

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]