Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

James Haber (Brandeis) 3: Mutations Arising during Repair of a Broken Chromosome

Автор: Science Communication Lab

Загружено: 2019-03-19

Просмотров: 6029

Описание:

https://www.ibiology.org/genetics-and...

Broken chromosomes naturally arise during DNA replication. In healthy cells, the breaks are repaired by homologous recombination. If the repair machinery is broken, cancer can result.

Talk Overview:
Dr. Haber begins his talk by explaining that broken chromosomes frequently arise during the process of DNA replication. In healthy cells, these double strand breaks (DSBs) are repaired by homologous recombination, an orderly process that preserves the genome. If the homologous recombination machinery is impaired, DNA truncations, translocations, and deletions often occur, resulting in genome instability and cancer. All mechanisms of homologous recombination have one common principal; the broken ends of the DNA are repaired by base pairing with a sequence that is identical or nearly identical and acts as a template for repair enzymes. Haber explains the general principles of homologous recombination and its critical role in maintaining genome stability.

In his second talk, Haber explains in greater detail the molecular steps that take place during the repair of a DNA double strand break. It turns out that the process of mating type switching in S. cerevisiae requires the site- specific cutting and repair of a yeast chromosome and this is an excellent model for studying DNA DSB repair. Working in this system and using techniques such as Southern blots, PCR and chromatin immunoprecipitation, Haber’s group was able to identify the proteins and enzymatic steps in DNA repair.

DNA synthesis that occurs during repair is much less accurate than normal DNA replication. Using the yeast mating type switching system, Haber’s lab identified base pair substitutions, frame shifts and other mutations that occur when the newly synthesized strand dissociates from the template strand during homologous recombination. Interestingly, Haber found that sometimes the newly synthesized strand will “jump” to a related but divergent template, even on another chromosome, and then jump back to complete the repair. Further experiments showed that this happens because the repair polymerase falls off the template with a very high frequency. Understanding why this occurs may help us to decipher the complex chromosomal rearrangements associated with certain human diseases.

Speaker Biography:
Jim Haber is Professor of Biology and Director of the Rosenstiel Basic Medical Sciences Research Center at Brandeis University. He received his A.B. degree in Biochemical Sciences at Harvard College and his Ph.D. in Biochemistry at U.C. Berkeley. After postdoctoral training at the University of Wisconsin in Madison, he joined the faculty at Brandeis University. He is a Fellow of the American Association for the Advancement of Science, the American Academy of Microbiology and the American Academy of Arts and Sciences, and a Member of the National Academy of Sciences.

Haber’s lab has pioneered the real-time monitoring of the repair of double-strand chromosome breaks in yeast cells by using Southern blots, PCR and chromatin immunoprecipitation and has characterized many of the molecular steps in different mechanisms of double strand break repair by homologous recombination and non-homologous end-joining. His lab also investigates the DNA damage response by which cells arrest mitosis when cells suffer a single chromosome break.

Learn more about Haber’s research here:
http://www.bio.brandeis.edu/haberlab

James Haber (Brandeis) 3: Mutations Arising during Repair of a Broken Chromosome

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Джеймс Хабер (Брандейс) 1: Восстановление поврежденных хромосом путем гомологичной рекомбинации

Джеймс Хабер (Брандейс) 1: Восстановление поврежденных хромосом путем гомологичной рекомбинации

C. David Allis (Rockefeller U.) 2:  Epigenetics in Development and Disease

C. David Allis (Rockefeller U.) 2: Epigenetics in Development and Disease

Объяснение ПЦР (полимеразной цепной реакции)

Объяснение ПЦР (полимеразной цепной реакции)

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Тиция де Ланге (Рокфеллеровский университет) 2: Как теломеры решают проблему защиты концов

Тиция де Ланге (Рокфеллеровский университет) 2: Как теломеры решают проблему защиты концов

Сергей Есенин: Настоящая история без школьных мифов / Личности / МИНАЕВ

Сергей Есенин: Настоящая история без школьных мифов / Личности / МИНАЕВ

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Mechanisms of DNA Damage and Repair

Mechanisms of DNA Damage and Repair

James Haber (Brandeis) 2: Molecular Mechanisms of Repairing a Broken Chromosome

James Haber (Brandeis) 2: Molecular Mechanisms of Repairing a Broken Chromosome

Jan-Michael Peters (IMP) 2: How do Cohesin and CTCF Fold DNA in Mammalian Genomes?

Jan-Michael Peters (IMP) 2: How do Cohesin and CTCF Fold DNA in Mammalian Genomes?

Репликация ДНК — Брюс Альбертс (UCSF/Science Magazine)

Репликация ДНК — Брюс Альбертс (UCSF/Science Magazine)

Структура и функции эндоплазматического ретикулума

Структура и функции эндоплазматического ретикулума

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

Решётка Паннета — базовое введение

Решётка Паннета — базовое введение

РНК-интерференция (РНКi): видео от Nature

РНК-интерференция (РНКi): видео от Nature

Jan-Michael Peters (IMP) 1: Cohesin: Roles Beyond Sister Chromatid Cohesion?

Jan-Michael Peters (IMP) 1: Cohesin: Roles Beyond Sister Chromatid Cohesion?

В. Нарри Ким (IBS и SNU) 1: Биогенез и регуляция микроРНК

В. Нарри Ким (IBS и SNU) 1: Биогенез и регуляция микроРНК

Curing Disease With Genetics And AI

Curing Disease With Genetics And AI

Introduction to Confocal Microscopy

Introduction to Confocal Microscopy

Бактериальная генетика

Бактериальная генетика

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]