Теория, решающая «неразрешимые» проблемы квантовой физики — теория возмущений
Автор: Parth G
Загружено: 2022-02-08
Просмотров: 65224
Перейдите по ссылке https://www.Wondrium.com/ParthG, чтобы начать бесплатную пробную версию уже сегодня!
Иногда некоторые задачи квантовой механики становятся неразрешимыми из-за своей математической сложности. Но у нас всё ещё есть методы приближенного нахождения их решений! Одним из таких методов является теория возмущений — давайте посмотрим, как её можно использовать. #возмущение #квантовый #приближение
Для начала этого видео мы рассмотрим, как мы изучаем задачи квантовой физики. Напомним, что каждой системе соответствует волновая функция. Например, если наша система — это электрон в пространстве, то волновая функция этого электрона даст нам вероятность нахождения электрона в различных точках пространства. Подробнее об этом я расскажу в своём видео о волновых функциях!
Но как же на самом деле найти волновую функцию системы? Конечно же, нам нужно решить уравнение Шрёдингера! Это основное уравнение квантовой механики, и мы подставляем информацию о нашей системе (такую как кинетическая и потенциальная энергия или потенциальная яма системы), чтобы найти разрешённые волновые функции. В частности, мы подставляем информацию о системе в гамильтониан уравнения Шрёдингера.
Если мы знаем, как решить уравнение Шрёдингера, как только подставим свойства системы, то сможем вычислить разрешённые волновые функции (и уровни энергии) системы. Уровни энергии, конечно же, дискретны, а не непрерывны, что называется квантованием.
Но что произойдёт, если мы не сможем решить уравнение Шрёдингера для данной системы? Что, если у нас недостаточно математических навыков или методов для решения конкретного дифференциального уравнения? Один из способов решения таких задач — численный, с использованием компьютера. А что, если у нас нет компьютера?
В таких ситуациях физики разработали несколько хитроумных методов для нахождения приближённых решений нашего уравнения. Одним из таких методов является теория возмущений. Этот подход лучше всего подходит для систем, очень близких к другим системам, решения которых нам известны. В данном случае фраза «очень близко» означает, что новую систему можно описать как исходную систему с небольшим изменением. Пример, используемый в этом видео, — это добавление небольшой дельта-функции Дирака (пика) в середину квадратной потенциальной ямы.
Тогда гамильтониан новой системы можно записать как гамильтониан старой системы с небольшим изменением. Обычно мы также умножаем новое/добавленное небольшое изменение на множитель лямбда, который помогает нам в наших дальнейших математических шагах. Лямбда принимает значения от 0 до 1 при переходе от невозмущенной исходной системы (лямбда = 0) к возмущенной новой системе (лямбда = 1).
Тогда можно сказать, что допустимые волновые функции новой системы равны волновым функциям старой системы с небольшим членом, пропорциональным лямбде, с меньшим членом, пропорциональным квадрату лямбды, и так далее. Это образует бесконечную серию «поправок» к исходной волновой функции. У нас нет времени вычислять бесконечное количество членов, но, к счастью, в большинстве случаев достаточно только первого нового члена. Точно такая же логика применима и к уровням энергии.
К счастью, поправка первого порядка зависит только от изменений между старой и новой системами и волновых функций старой системы. И ничего больше. Поправка первого порядка к уровню энергии — это то, что мы умеем вычислять, а это значит, что нам не приходится иметь дело с «невозможным» дифференциальным уравнением, при этом получая очень хорошее приближение.
Именно поэтому теория возмущений — очень ценный метод для решения (или, по крайней мере, аппроксимации) «невозможных» для решения квантово-механических систем.
Большое спасибо за просмотр! Обязательно загляните в мои соцсети:
Instagram — @parthvlogs
Patreon — patreon.com/parthg
Music Channel — Parth G's Shenanigans
Merch — https://parth-gs-merch-stand.creator-...
Многие из вас спрашивали о том, что я использую для создания своих видео, поэтому я публикую здесь партнёрские ссылки! Я получаю небольшую комиссию, если вы совершаете покупки по этим ссылкам. Книга по квантовой физике, которая мне нравится: https://amzn.to/3sxLlgL
Моя камера (Sony A6400): https://amzn.to/2SjZzWq
Нейтральный фильтр: https://amzn.to/3qoGwHk
Микрофон и подставка (Fifine): https://amzn.to/2OwyWvt
Штатив Gorillapod: https://amzn.to/3wQ0L2Q
Мой плейлист по квантовой механике (с множеством видео с картами): • Quantum Physics by Parth G
Временные метки:
0:00 — Как решаются задачи в квантовой механике (волновые функции, уравнение Шрёдингера)
3:12 — Уровни энергии и волновые функции для квантовой механики Системы
4:53 — Теория возмущений (для возмущенной системы)
6:30 — Сообщение спонсора (и фокус!) — большое спасибо Wondrium
8:55 — Аппроксимация новых волновых функций и уровней энергии
10:00 — Приближение первого порядка — ЛЕГКО!
#реклама — Это видео спонсировано Wondrium
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: