Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Zero-Shot Learning - Dr. Timothy Hospedales

Автор: Yandex for ML

Загружено: 2015-10-23

Просмотров: 38535

Описание:

Yandex School of Data Analysis Conference
Machine Learning: Prospects and Applications

https://yandexdataschool.com/conference

The classic paradigm of predictive modelling in supervised machine learning
involves training classifiers or regressors to predict a target variable
of interest based on large quantities of annotated training data. However,
despite the age of “big data”, it is often the case that the specific category
of interest to be recognised has few or no prior examples — as in the
case of rare or recently emerged phenomena. This talk will introduce the
new and exciting area of zero-shot machine learning, which addresses this
setting of supervised prediction with zero prior training examples.

I will show how zero-shot learning can be achieved with a few strategies
including via semantic attributes and distributed (vector space) models of
words. We will see how zero-shot learning can be understood from a variety
of perspectives including as an extreme form of classifier or regressor
generalisation, learning a cross-modal embedding, or as a particular
category of neural network.

Throughout the talk, I will introduce a variety of contemporary example
applications of zero-shot learning including computer vision, forensics,
and natural language processing. Finally, I will outline a variety of current
research issues and open questions in zero-shot learning including unification
of attribute and vector space approaches, transductive learning,
and zero-shot domain adaptation.

Zero-Shot Learning - Dr. Timothy Hospedales

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

A Potential Surface Underlying Meaning? - Prof. Sándor Darányi

A Potential Surface Underlying Meaning? - Prof. Sándor Darányi

Can Machine Learning replace Signal Processing? - Prof. Nathan Intrator

Can Machine Learning replace Signal Processing? - Prof. Nathan Intrator

What is Zero-Shot Learning?

What is Zero-Shot Learning?

LSTM is dead. Long Live Transformers!

LSTM is dead. Long Live Transformers!

Как стать творческим мыслителем | Университет Карнеги-Меллона, По-Шен Ло

Как стать творческим мыслителем | Университет Карнеги-Меллона, По-Шен Ло

Вариационные автоэнкодеры

Вариационные автоэнкодеры

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Image Annotation – The Marriage of Computer Vision and NLP Using Deep Learning -  Prof. Lior Wolf

Image Annotation – The Marriage of Computer Vision and NLP Using Deep Learning - Prof. Lior Wolf

Multimodal Embeddings: Introduction & Use Cases (with Python)

Multimodal Embeddings: Introduction & Use Cases (with Python)

Transfer learning and Transformer models (ML Tech Talks)

Transfer learning and Transformer models (ML Tech Talks)

Визуально-языковые модели (VLM) в Яндексе: подходы, данные, подводные камни / Сергей Овчаренко

Визуально-языковые модели (VLM) в Яндексе: подходы, данные, подводные камни / Сергей Овчаренко

18. Information Theory of Deep Learning. Naftali Tishby

18. Information Theory of Deep Learning. Naftali Tishby

Нейронная сеть BERT — ОБЪЯСНЕНИЕ!

Нейронная сеть BERT — ОБЪЯСНЕНИЕ!

Секция на проверку базовых технических навыков ML-инженеров

Секция на проверку базовых технических навыков ML-инженеров

Zero-shot learning (eng sub)

Zero-shot learning (eng sub)

An Introduction to Graph Neural Networks: Models and Applications

An Introduction to Graph Neural Networks: Models and Applications

ICCV 2023 Tutorial: Open-World Learning: From Zero-Shot to Truly Open-World

ICCV 2023 Tutorial: Open-World Learning: From Zero-Shot to Truly Open-World

How Convolutional Neural Networks work

How Convolutional Neural Networks work

CS480/680 Lecture 19: Attention and Transformer Networks

CS480/680 Lecture 19: Attention and Transformer Networks

Краткое введение в энтропию, кросс-энтропию и KL-дивергенцию

Краткое введение в энтропию, кросс-энтропию и KL-дивергенцию

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]